工程材料EH,EHT,CHD是什么意思

工程材料EH,EHT,CHD是什么意思,第1张

EH-有效硬化层深度,为图样的技术要求。用显微硬度表示。

EHT-有效硬化层深度,为图样的技术要求。用显微硬度表示。

CHD-渗碳淬硬层深度,是对热处理工艺过程控制的要求,同样用显微硬度表示。

EHT=CHD-磨削余量。当渗碳淬火后不进行磨削加工,那么EHT=CHD。

由全球九个射电望远镜组成的望远镜有望产生银河系中心黑洞最佳的图像。

图像:HAITONG YU / GETTY

银河系中最猛烈的风暴正好就在它的中心肆虐。这是一个比任何恒星都要热的漩涡:一个过热气体的旋转圆盘,发射出两股喷流,一股在上方,一股在下方,像龙卷风一样旋转扭曲。在中间有一个完全静止的眼睛——一个全黑的球体,其直径数百万公里。

这是银河系中心的超大质量黑洞。现在,用一个地球大小的望远镜,我们捕捉到它的第一张照片。

黑洞也许是宇宙中最神秘的物体。它们是被重力扭曲得连光都无法逃脱的空间区域。它们围绕着密度明显是无限的物体,称为引力奇点——我们所知的物理定律在这里崩溃了。

想要“看到”黑洞似乎是不可能的,但是黑洞的边缘或者事件视界之外的区域实际上非常明亮。

落入黑洞的物质通过一些难以理解的机制被加热到数百万摄氏度。这使得最大的黑洞,比如星系中心的超大质量黑洞,成为宇宙中最亮的物体。

它们其中有许多在以前都被成像过,但只是作为亮点,从来没有任何细节的内部工作。

要直接看到一个,我们最好的办法是把望远镜指向人马座和一个名为人马座A*的亮点,在那里有位于地球大约25000光年之外银河系本身的超大质量黑洞。

不过,有一个问题。我们不能仅仅用哈勃太空望远镜捕捉人马座A*,因为我们的视野被气体和尘埃所遮蔽。我们必须转向无线电波,它可以毫无阻碍地穿过银河系。

我们还需要有史以来最大的射电望远镜,因为典型的射电望远镜只能探测到比人马座A*大数百万倍的物体。因为距离太远,人马座A*是天空中的一个微小的斑点,直径只有37微角秒——大约相当于月球表面的一颗葡萄大小。

事件视界望远镜(EHT)包括全世界九个射电望远镜阵列:智利、美国、墨西哥、法国、西班牙和南极洲。通过对每个数据进行三角测量,EHT像一个巨大的无线电波盘一样工作。这个信号并不是完美的,但是应该足够捕捉人马座A*的亮点以及中心的黑色轮廓。

黑洞周围的吸积盘可能会呈现为围绕在黑暗圈周围的明亮漩涡,如这张模拟图像所示。Hotaka Shiokawa/视界望远镜

这样的图像可以让我们以新的方式,来检验我们对物理学和宇宙学,特别是爱因斯坦的广义相对论的理解。

物理学家首先研究的是黑洞本身的形状。广义相对论预测黑洞是完全球形的,这意味着EHT的图像轮廓应该呈圆形。任何一种的挤压形状都可能是与公认的正统理念的第一次观察上的分歧,这在物理学上掀起了一场潜在的革命。

另一个谜团与吸积盘有关,吸积盘是围绕在黑洞周围运动的物质的漩涡。那么它是如何加热的?物理学家经常把这个过程描述为一种“摩擦”,就像气体颗粒在盘中旋转时相互摩擦一样。但我们又知道气体太分散,无法直接物理接触,一定还有其他的原因,比如也许与驱动湍流的强磁场有关。同样,直接的图像也可以给我们答案。

超大质量黑洞的演化与星系本身的生长息息相关。为了理解这些过程,我们需要放眼银河系之外。EHT应该足够强大,能够对5000多万光年外室女座M87星系中心的超大质量黑洞进行成像。尽管M87离我们的距离是人马座 A*的2000多倍,但它的黑洞却是人马座 A*的1500倍,所以它看起来应该只比人马座 A*稍小一点。

2017年4月,九架望远镜将他们所有的“眼睛”都对准了人马座 A*。从那时起,科学家们一直在编译数据,绘制图像,并将其与我们预期的黑洞模型进行比较。天文学家和天体物理学家期待并预计很快就会有来自EHT的第一批图像。

其结果是2018年的重大天体物理学事件,这预示着黑洞天文学进入了一个新时代——所有这些都是通过观察肆虐银河系中心的风暴眼来实现的。

参考资料

1.Wikipedia百科全书

2.天文学名词

3. Cathal O'Connell- cosmosmagazine-一盒

转载还请取得授权,并注意保持完整性和注明出处

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

参考资料:百度百科-扫描电子显微镜


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/442530.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-30
下一篇2023-05-30

发表评论

登录后才能评论

评论列表(0条)

    保存