传统的多元逐步回归与结构方程模型有什么区别

传统的多元逐步回归与结构方程模型有什么区别,第1张

多元回归方程属于单方程模型方法,结构方程模型属于联立方程模型方法,回归分析只能处理显性变量,而结构方程模型可以发现潜在变量。多元一般只有一个因变量,而且是单向的,SEM则是可单,可双,多元是基础,SEM是后来的发展和完善。

    结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。

    SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。

     测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。

    如何描述它们之间的关系?可以通过以下方式:

1. 若因子指标是连续的,用线性回归方程(linear regression equations);

2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

     结构模型 则在一个多元回归方程中描述了三种变量关系:

1. 因子之间的关系;

2. 观察变量之间的关系;

3. 因子和不作为因子指标的观察变量之间的关系。

    同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:

1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);

2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

    在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。

    以下特殊功能也可以通过SEM实现:

1. 单个或多组分析(Single or multiple group analysis);

2. 缺失值(Missing data);

3. 复杂的调查数据(Complex survey data);

4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);

5. 随机斜率(Random slopes);

6. 限制线性和非线性参数(Linear and non-linear parameter constraints);

7. 包括特定路径的间接作用(Indirect effects including specific paths);

8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);

9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);

10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。

    以上功能也适用于CFA和MIMIC。

分析错误:

单变量方差分析具体步骤:

1.选择菜单【分析】-【一般线性模型】-【单变量】,在弹出的对话框中进行如下选择:把【产品销量】选入因变量列表框,把【超市规模】选入固定因子列表框。需要注意的是:这里的【因变量】列表框只能选择一个变量,【固定因子】、【随机因子】列表框可以选择多个变量。

从对话框可以看出单变量方差分析与单因素方差分析的差别:一般线性模型单变量方差分析的因子区分为固定因子和随机因子,比单因素Anova分析更为细致,而且固定因子列表框可以同时选入多个变量,单因素Anova分析,因子列表框只能选入一个变量。

2.在主对话框界面选择右侧【模型】菜单,选择默认【全因子】,【类型Ⅲ】,单击【继续】按钮返回主对话框

3.在主对话框界面右侧选择【事后多重比较】菜单,把【超市规模】选入【事后检验】列表框,同样勾选【LSD】、【SNK】、【Bonferroni】、【Tukey】、【Duncan】复选框,单击【继续】按钮,返回主对话框。该对话框与单因素Anova对话框类似,但不同的是这里可以自由选入因子。

4.在主对话框界面右侧选择【选项】菜单,在【输出】栏,勾选【描述性统计】【同质性检验】、【残差图】复选框,单击【继续】按钮返回主对话框

5.单击【确定】按钮,输出结果。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/444687.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-31
下一篇2023-05-31

发表评论

登录后才能评论

评论列表(0条)

    保存