中国南京大学和日本福井大学的研究人员(下称“联合团队”)合作开发了一种可穿戴的高 科技 织物,能够通过身体运动产生能量。他们在同行评议的杂志《纳米能源》上发表了他们的发现。
联合团队利用了摩擦起电的原理,产生摩擦电能。摩擦起电是指用摩擦的方法使两个不同的物体带电的现象,叫摩擦起电(或两种不同的物体相互摩擦后,一种物体带正电,另一种物体带负电的现象)。
在实践中,摩擦电是通过将两种材料摩擦在一起而产生的,从而增强了它们表面之间的接触。例如,当你在头发上穿插一根头发时,可能会发生这种摩擦电的现象。
在利用这一现象的基础上,之前已经开发出一种名为“摩擦电纳米发电机”的复合材料(也称为TENG),它能够用来将机械运动转化为电能。由于体积小,Teng可以通过身体的运动来驱动电子设备。摩擦电层由于身体的机械运动(例如行走或跑步时)而获得电荷。这个过程将机械能转换成电能,然后再利用电能给电子设备充电。
因此,摩擦电纳米发电机(称为EF-TENG)全纤维复合层可以用于衣服制造过程,将复合层轻松地融入普通布料中,制造出可发电的衣服。
摩擦电纳米发电机材料并不是一项全新的技术。该材料最早是由中国科学院王中林院士2012成功研发的,可以将握手、走路、潮汐等摩擦和静电产生的电能收集和利用起来。
然而,传统的摩擦电纳米发电机材料有一些令人不快的特性,比如透气性差。此外,它们的发电、送电的效率也不高。
针对这些问题,联合团队在相关技术研究基础上,使用银纳米线作为电极,电纺聚苯乙烯纳米纤维作为电荷存储层,改进了摩擦电纳米发电机材料的性能,形成了透气的抗菌电极和静电感应增强层,实现了更好的性能和改进的透气性。
另外,原来摩擦电纳米发电机材料表面上积聚的电荷会慢慢丢失或消散,从而降低输出性能和表面电荷密度。通过联合团队的改进,添加了聚苯乙烯膜,实现了表面电荷密度的稳定。
由静电纺聚偏氟乙烯/尼龙、银纳米线和聚苯乙烯制成的全纤维复合纳米发电机可以轻松地集成到常规服装中,使其能够通过日常运动为小型电子设备充电。该团队通过为126个LED供电,展示了他们新的高 科技 纺织品的性能。尽管如此,该设备仍然缺乏足够的输出为需要更多功率的设备充电。
联合团队论文的作者之一坂本博明博士(Hiroaki Sakamoto)表示,因为本研究形成的新型材料更加柔软和透气,因此,尽管该技术目前只能为LED和小型设备(如计算器)充电,但它的材料特性意味着未来的可能性,在应用广泛后,从衣服中收集静电将拥有巨大的潜力。
An all-fibrous triboelectric nanogenerator with enhanced outputs depended on the polystyrene charge storage layer - (Nano Energy)
交联聚苯乙烯是指以苯乙烯、二乙烯苯为起始单体,经过自由基共聚反应合成的具有体型分子网络结构的共聚交联体。聚苯乙烯(英语:Polystyrene,简称PS)为一种无色透明的热塑性塑料,是由苯乙烯单体经自由基缩聚反应合成的聚合物,因其具有高于100摄氏度的玻璃转化温度,所以经常被用来制造各种需要承受开水温度的一次性容器或一次性泡沫饭盒等。 聚苯乙烯(PS)包括普通聚苯乙烯,发泡聚苯乙烯(EPS),高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。
机械性能
聚苯乙烯PS的分子量过高,加工困难,所以通常聚苯乙烯的分子量为5~20万。PS的机械性能,随温度升高,刚性(弹性模量、抗拉强度、冲击强度等下降,而断裂伸长率较大。PS的透明性好,透光率达88~92%,仅次于丙烯酸类聚合物,折射率为1.59~1.60。故可用作光学零件,但它受阳光作用后,易出现发黄和混浊。PS有主要缺点是性脆和耐热性低。对PS进行改性,如橡胶改性的高抗冲PS(HIPS);MMA-丁二烯-苯乙烯(MBS);A(丙烯腈)B(丁二烯)S ,在工业上应用最广泛的是ABS塑料。 优异、持久的隔热保温性:挤塑板,导热系数为0.028w/mk,具有高热阻、低线性膨胀率的特性。其导热系数远远低于其它 的保温材料如:EPS板、发泡聚氨酯、保温砂浆、水泥珍珠岩等。同时由于苯材料具有稳定的化学结构和物理结构,确保本材料保温性能的持久和稳定。
氧化铝晶体制备方法:1、溶胶-乳液-凝胶法
溶胶-乳液-凝胶法是在溶胶凝胶法的基础上发展起来的。其主要工艺过程是利用醇铝水解,经过溶胶凝胶过程制备球形氧化铝粉体,整个水解体系比较复杂,其中溶解醇铝的辛醇占50%,乙腈溶剂占40%,分散水的辛醇和丁醇分别占9%和1%,并且用羟丙基纤维素作分散剂,得到了球形度非常好的球形氧化铝粉体。
溶胶-乳液-凝胶法由于采用了有机溶剂及表面活性剂,缺点是不利于氧化铝粉体的分离及干燥。
溶胶-乳液-凝胶法制备球形氧化铝粉体SEM图片
2、滴球法
滴球法是将氧化铝溶胶滴入到油层(通常使用石蜡、矿物油等),靠表面张力的作用形成球形的溶胶颗粒,随后溶胶颗粒在氨水溶液中凝胶化,最后将凝胶颗粒干燥,煅烧形成球形氧化铝的方法。滴球法制备的球形氧化铝主要应用于吸附剂或催化剂载体。
滴球法是对溶胶-乳液-凝胶法在工艺上的进一步改进,其优点是省去了粉体与油性试剂的分离处理。缺点是制备球形氧化铝的粒径较大,
3、均相沉淀法
均相沉淀法是指在Al2(SO4)3或NH4Al(SO4)2均相溶液中,其沉淀过程包括晶核形成、聚集长大、析出。在沉淀剂的作用下,均相溶液中的浓度降低,就会均匀地生成大量的微小晶核,最终形成的细小沉淀颗粒会均匀地分散在整个溶液当中,制备得到球形氧化铝。
需要特别注意的是:球形氧化铝粉体颗粒只有在Al2(SO4)3或NH4Al(SO4)2溶液中能够获得,而不能在Al(NO3)3或AlCl3溶液中得到,可见SO42-对形成球形颗粒起到了至关重要的作用。
均相沉淀法制备球形氧化铝SEM图
均相沉淀法优点是能够制备球形度非常好的氧化铝粉体,形貌均一,粒度分布窄。缺点是该方法局限性大,形貌形成机理尚不明确。
4、模板法
模板法是以球形原料作为过程中控制形态的试剂,产品通常空心或者是核壳结构。主要工艺过程是以聚苯乙烯微球为模板剂,用碳酸功能化的氧化铝纳米粒子包覆,再通过甲苯洗涤,制备了空心氧化铝球体。
模板法是制备空心球体的好方法。缺点是对模板剂的要求较高,制备过程步骤多,不易操作。
空心球形氧化铝的合成原理示意图
5、气溶胶分解法
气溶胶分解通常是以铝醇盐为原料,利用铝醇盐易水解和高温热解的性质,并采用相变的物理手段,将铝醇盐气化,然后与水蒸汽接触水解雾化,再经高温干燥或直接高温热解,从而实现气-液-固或气-固相的转变,最终形成球形氧化铝粉体。气溶胶分解法关键是由雾化部分和反应部分组成的复杂的实验装置。
气溶胶水解法的工艺流程图
6、喷射法
喷射法制备球形氧化铝的实质是在较短的时间内实现相的转变,利用表面张力的作用使产物球形化,根据相转变的特点又可以分为喷雾热解法、喷雾干燥法和喷射熔融法。
(1)喷雾热解法
喷雾热解法是以Al(SO4)3、Al(NO3)3和AlCl3溶液为原料,通过雾化作用形成球形液滴,经过高温热解生成球形氧化铝粉体。该方法热解过程需要900℃,耗能较大。
(2)喷雾干燥法
喷雾干燥法是先将铝盐溶液与氨水反应制成氧化铝溶胶,再将氧化铝溶胶在150-240℃下喷雾干燥,制备得到球形氧化铝粉体。
该方法相比于喷雾热解法法,优点是:可减少能量的消耗。
喷雾干燥法制备球形氧化铝粉体SEM图
(3)喷射熔融法
喷射熔融法是利用等离子焰直接将固体铝粉或氧化铝粉熔融,然后马上做退火处理,通过调节载气成分和直流电弧的功率可以控制球形化程度,并可以制备空心结构。
等离子喷雾熔融法制备球形氧化铝
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)