如下参考:
1.首先选择最后一个标准偏差来显示复制的单元格,如下图所示。
2.点击[start]-[autosum]旁边的三角形,就会出现一个下拉菜单。点击【其他功能】如下图所示。
3.出现[insertfunction]窗口,点击[selectcategory],选择[all],找到standarddeviation[STDEVP]函数,如下图所示。
4.单击ok后,单击箭头所指的位置并选择数据,如下图所示。
5.选择后,点击“ok”,可以看到计算出的标准差,如下图所示。
标准误的计算公式是标准误等于标准差除以N的根号。标准误英文StandardError衡量对应样本统计量抽样误差大小的尺度,标准误用来衡量抽样误差,标准误越小表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。
标准误的特点
标准误是统计推断可靠性的指标,此外还需要特别指出的是,标准误还可以指样本标准差,方差等统计量的标准差,不仅仅只是样本均数的标准差,标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方根误差。
标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的,由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差。
这是估计的标准误差,是残差均方开根号的值,残差均方等于残差平方和除以自由度,残差平方和等于总平方和减去回归平方和。
标准误(SEM)英文:StandardErrorofMean标准误标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。
准确的来说,标准误差与标准偏差不是一个概念。标准误差定义为各测量值误差的平方和的平均值的平方根,而计算标准偏差时常用到贝塞尔公式。
扩展资料:
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
标准差也被称为标准偏差,或者实验标准差。
:√[∑di^2/(n-1)]=Re,(式中:n为测量次数);
第一组有以下三个样本:3,4,5
第二组有以下三个样本:2,4,6
这两组的平均值都是4,但是第一组的三个数值相对更靠近平均值,也就是离散程度小,均方差就是表示这个的。
参考资料来源:百度百科-均方根误差
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)