某一值的离均程度。
什么是误差线?
误差线通常用于统计或科学数据,显示潜在的误差或相对于系列中每个数据标志的不确定程度。误差线可以用标准差(平均偏差)或标准误差,一般通用的是这两个。
(1)平均值±标准差(Mean±SD):
(2)平均值±标准误(Mean±SEM):
( 北大博士教你如何添加误差线 (sohu.com) )
误差线是通常用于统计或科学数据,显示潜在的误差或相对于系列中每个数据标志的不确定程度。误差线可以用 标准差 ( 平均偏差 )或 标准误差 ,一般通用的是这两个,如果是发英文文章,在caption中加以上bars donate S.D.(标准差)or S.E.(标准误差),中文文章可以不用说明。二 两种误差区别做误差线的话,标准差(std. deviation)和标准误(std.error)都可以,两者的侧重点不一样,一般用标准差(std. deviation)。
tips:两者区别
①概念不同;标准差是离均差平方和平均后的方根,标准误差定义为各测量值误差的平方和的平均值的平方根;
②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等;
③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。
(来自百度)
误差线用于指明度量中的估计误差;换而言之,误差线指明值中的不确定性。
在 Spotfire 中,可以在条形图、折线图和散点图中使用误差线。如果您可以通过 TIBCO Spotfire Business Author 许可证访问编写模式,则可以添加误差线;但如果分析是在 TIBCO Spotfire Professional 中创建的,则其中的图表可能已添加了误差线。条形图和折线图可以显示垂直误差。散点图可以显示垂直误差和水平误差。下图呈现了散点图标记上可能显示的四种误差。但是,上限误差和下限误差是指基础数据。这意味着如果您在图表中使用反转刻度,或更改条形图中条形的方向,那么误差线也将分别反转或更改方向。例如,对于使用反转 Y 轴的散点图,上限垂直误差将显示在标记下方,而不是标记上方。对于具有水平条形和非反转刻度的条形图,水平上限误差将显示在条形的右侧。
您可以选择仅显示其中一个误差线,或显示任意几个误差线。
误差线的长度表明值的不确定性。例如,对于平均值,长误差线表示对其计算平均值的集中度较低,因此平均值不确定。相反,短误差线表示值的集中度高,因此平均值更加确定。
在 Spotfire 中设置误差线的不同方法有两种。对于聚合值,您可以使用某一个现有度量值,例如 标准误差 或 标准偏差 。然后将在 Spotfire 中计算误差线的长度。在以下示例中,条形图显示了一年中每个月的平均销售额。统计测量标准误差用于计算上限误差线的长度。此图中未定义任何下限误差线。
定义误差线的另一种方法是使用现有数据表列中的值。例如,如下表所示,您可能拥有已计算平均值和误差值的数据表。然后,您可以使用这些列来设置误差线。在下面的散点图中,Y 轴表示“平均值”列,上限误差和下限误差分别表示“上限误差”和“下限误差”两列。
默认情况下,误差线相对于图表中的标记位置绘制,但对于某些度量值,这可能不是您要显示的内容。在这些情况下,自定义表达式可能很有帮助。
例如,如果标记表示聚合值(例如平均销售额),您可能希望显示最大值和最小值作为误差线。但是,如果您为下限误差选择度量值“最小值”,为上限误差选择度量值“最大值”,则误差线将不会显示最小值和最大值,因为误差线相对于标记位置显示。与此相反,上限误差会显示平均值加最大值,下限误差会显示平均值减最小值。要显示绝对最小值和绝对最大值,您需要使用自定义表达式。在这种情况下,上限误差的自定义表达式应为 Max([Sales])-Avg([Sales]),下限误差的自定义表达式应为 Avg([Sales])- Min([Sales])。
( 误差线 (tibco.com)
误差线并没有严格的定义,所以你需要看作图的作者是如何定义上下限的,也许是均值的标准差,也许是整个样本的标准差,也许是1倍,也许是1.96倍。总之,它们都是某种置信区间,要小心的是它到底是谁的置信区间。
假如实验设计了重复(至少3次以上),那么统计数据肯定需要以平均值 +/- 标准误差或者标准偏差表示
使用误差线要注明种类
要注明样本数n
误差线与显著性只用在独立重复实验上,代表性的实验结果不应该包含误差线与P值,因为这相当于n=1
推断性实验的误差线最好使用标准误或置信区间,对于n为3的实验,可直接列出3次的结果,不标注误差线
95%置信区间表示有95%信心里面有总体的均值,n为3时,标准误的4倍为这个区间
n为3,两倍标准误不重复覆盖,P <0.05, 刚好覆盖,P接近0.05;n大于10,间距1倍标准误,P接近0.05,两倍就是0.01
置信范围表示误差线时,n为3,重叠一臂,P为0.05;重叠半臂,P为0.01
同一组内的重复实验,标准误与置信区间不能用来表示组内差异
科学网—简析条形图(bar plot)上的误差线 - 于淼的博文 (sciencenet.cn)
如下参考:
1.首先选择最后一个标准偏差来显示复制的单元格,如下图所示。
2.点击[start]-[autosum]旁边的三角形,就会出现一个下拉菜单。点击【其他功能】如下图所示。
3.出现[insertfunction]窗口,点击[selectcategory],选择[all],找到standarddeviation[STDEVP]函数,如下图所示。
4.单击ok后,单击箭头所指的位置并选择数据,如下图所示。
5.选择后,点击“ok”,可以看到计算出的标准差,如下图所示。
standard deviation指的是标准差,又称均方差,描述的是一组数据分布的离散程度。error通常用来指单个测量值与实际值的差别。
uncertainty指的是实际值可能存在的一个区间(通常伴随着一个置信度)
比如你要量一个长度,取决于你的工具,每一次测量都有一个error,这是由工具本身的精度产生的。当然计算过程中产生的误差也叫做error。error还可具体分为systematic error and random error。
多次测量,把所有的测量值以及他们的error求平均,会得到一个x~y的范围,也会表示成x±y这样,y就被叫做uncertainty。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)