spss结果中,F值,t值及其显著性(sig)的解释

spss结果中,F值,t值及其显著性(sig)的解释,第1张

1、T值表示:逐个检验各自变量(回归)。

2、Sig值包含p值。无论数据(sig)的显著性是“显著性”、“中度显著性”还是“高度显著性”,都需要将P值与显著性水平(0.05或0.01)进行比较。如果P值是0.01。

3、F值表示:方差检验量,即整个模型的总体检验。

4、P值表示:用于确定假设检验结果的参数。还可以利用分布的拒绝域,根据不同的分布对其进行比较。

T-test

T检验,这是1905年w.s.oosset氏首先提出的,当时他以“Student”为笔名发表,故至今有的书籍仍称之为“学生氏检验”。t可能是倍数的意思(times),t就是样本均数SX(x)与总体均数(“)间相距几倍标准误(sx)。t检验是用于比较两均数间相差是否显著的。

t检验须视乎方差齐性(EqualityofVariances)结果。所以,SPSS在进行t-testforEqualityofMeans的同时,也要做Levene'sTestforEqualityofVariances。

以上内容参考:百度百科-显著性

1、t值

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n <30),总体标准差σ未知的正态分布。

T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。

2、P值

P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

扩展资料

实用举例

1、t检验可用于比较男女身高是否存在差别

为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。

假设

H0:男平均身高 = 女平均身高

H1:男平均身高 ≠ 女平均身高

选用双侧检验:选用α=0.05的统计显著水平

2、P值

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。

如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。

如果P值>0.05,说明结果更倾向于接受假定的参数取值。

参考资料来源:百度百科-t值

参考资料来源:百度百科-p值


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/464630.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-04
下一篇2023-06-04

发表评论

登录后才能评论

评论列表(0条)

    保存