t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
t检验注意事项
1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行)。
只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。
在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。
1、t值是t检验的统计量值,t检验,亦称studentt检验(Student's
t
test),主要用于样本含量较小(例如n
<
30),总体标准差σ未知的正态分布。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
2、F值是F检验的统计量值
。F检验是一种在零假设(null
hypothesis,
H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P
值,一般以P
<
0.05
为有统计学差异,
P<0.01
为有显著统计学差异,P<0.001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于0.05
、0.01、0.001。
扩展资料:
F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
参考资料:
百度百科——假设检验中的P值
百度百科——F检验
百度百科——t检验
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)