sem的模型介绍

sem的模型介绍,第1张

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。

sem 结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。 结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。

矩阵常用于统计分析等应用数学学科中,以及电路学、力学、光学和量子物理中都有应用。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。

矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。

无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

矩阵的应用:

1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。这种做法在矩阵力学中也能见到。例如密度矩阵就是用来刻画量子系统中“纯”量子态的线性组合表示的“混合”量子态。

另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。这种碰撞可以解释为结果粒子状态和入射粒子状态线性组合的标量积。

以上内容参考:百度百科—矩阵


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/472688.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-06
下一篇2023-06-06

发表评论

登录后才能评论

评论列表(0条)

    保存