在它基础上,又派生出一个调整确定系数,是因为在多元线性回归方程中,自变量个数的增加会引起余差平方和的减少,R2增大;因此,尽管有的自变量与y线性关系不显著,将其引入方程后,也会使R2增大。也就是说,R2本身还受自变量个数的影响。
因此,为了剔除自变量个数对R2的影响,让R2的大小只反应回归方程的拟合优度,引入了调整的R2,从其可以看出,调整的R2随k的增加而减小,(n是样本个数,在调查之后分析时,是固定的),可以识别自变量个数对R2的影响。
经验上,一般当k:n大于1:5时,R2会高估实际的拟合优度,这时,宜用调整后的R2来说明方程的拟合优度,也就是自变量对y的解释能力。
结构方程模型 (structural equation modeling,SEM)是一种建立、估计和检验因果关系模型的方法。它可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
为何要用结构方程模型?
很多社会、心理研究中所涉及到的变量,经常不能准确、直接地测量,这种变量称为 潜变量 ,如工作自主权、工作满意度等。传统的统计分析方法不能妥善处理这些潜变量,而结构方程模型能同时很好地处理这些潜变量及其指标。
矩形是可视变量draw observed,椭圆形是潜变量draw unobserved
B站资源【推荐视频】https://www.bilibili.com/video/BV1PW411E7kz?p=14
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)