验证性因子分析步骤

验证性因子分析步骤,第1张

问题一:验证性因子分析的测试步骤 验证性因子分析往往通过结构方程建模来测试。在实际科研中,验证性因子分析的过程也就是测度模型的检验过程。可以进行测度模型及包括因子之间关系的结构方程建模并拟合的统计软件有很多,比如LISREL、AMOS、EQS、MPLUS等。其中最常用的是LISREL。在LISREL这个软件中有三种编程语言:PRELIS是用来作数据处理或简单运算,比如作一些回归分析、计算一个样本的协方差矩阵;LISREL是一种矩阵编程语言,它用矩阵的方式来定义我们在测度项与构件、构件之间的关系,然后采用一个估计方法 (比如极大似然估计) 进行模型拟合;SIMPLIS是一种简化的结构方程编程语言,适合行为研究者用。一般来讲,研究者需要先通过SIMPLIS建立测度模型,然后进行拟合。根据拟合的结果,测度模型可能需要调整,抛弃质量差的测度项,然后再拟合,直到模型的拟合度可以接受为止。

问题二:验证性因子分析的定义 在社会调查研究构成中,研究者首先开发调查问卷。对应于每一个研究者所感兴趣的理论变量,问卷中往往有多个问题。比如,研究者对顾客的忠诚度感兴趣,忠诚度可能用购买频率、主观评估、消费比例等多个问题来衡量。这个理论变量就是因子,这些个别问题是测度项。验证性因子分析就是要检验购买频率、主观评估、消费比例是否真的可以反映忠诚度。与验证性因子分析相对的是探索性因子分析。在探索性因子分析中,比如,因为我们想让数据“自己说话”,我们即不知道测度项与因子之间的关系,也不知道因子的值,所以我们只好按一定的标准(比如一个因子的解释能力) 凑出一些因子来,再来求解测度项与因子关系。探索性因子分析的一个主要目的是为了得到因子的个数。探索的因子分析有一些。第一,它假定。在实际研究中,我们往往会假定一个因子之间没有因果关系,所以可能不会影响另外一个因子的测度项。第二,探索性因子分析假定测度项残差之间是相互独立的。实际上,测度项的残差之间可以因为共同方法偏差、子因子等因素而相关。第三,探索性因子分析强制所有的因子为独立的。这虽然是求解因子个数时不得不采用的机宜之计,却与大部分的研究模型不符。最明显的是,自变量与因变量之间是应该相关的,而不是独立的。这些局限性就要求有一种更加灵活的建模方法,使研究者不但可以更细致地描述测度项与因子之间的关系,而且并对这个关系直接进行测试。而在探索性因子分析中,一个被测试的模型(比如正交的因子) 往往不是研究者理论中的确切的模型。验证性因子分析 (confirmatory factor *** ysis) 的强项正是在于它允许研究者明确描述一个理论模型中的细节。那么一个研究者想描述什么呢?因为测量误差的存在,研究者需要使用多个测度项。当使用多个测度项之后,我们就有测度项的“质量”问题,即效度检验。而效度检验就是要看一个测度项是否与其所设计的因子有显著的载荷,并与其不相干的因子没有显著的载荷。当然,我们可能进一步检验一个测度项工具中是否存在共同方法偏差,一些测度项之间是否存在“子因子”。这些测试都要求研究者明确描述测度项、因子、残差之间的关系。对这种关系的描述又叫测度模型 (measurement model)。对测度模型的检验就是验证性测度模型。对测度模型的质量检验是假设检验之前的必要步骤。

问题三:菜鸟求教,验证性因子分析拟合指标的关系 主成分分析属于探索性因子分析(EFA),和验证性因子分析(CFA)不一样,它们基于不同的原理和计算方法,验证性因子分析往往更容易出现比较好的结果,因为它是在你设定好因子结构的情况下去检验这一种结构和你的数据是否拟合,不一定可以拟合你数据的模型只有一种,但只要你的这一种拟合指标好就OK,而探索性因子分析是完全靠数据说话,数据驱动,这当然更不容易获得满意的结果。如果你主成分分析结果不好,可以尝试直接用验证性因子分析,若是获得满意的结果,可以考虑报告验证性因子分析的结果而不报告主成分分析。

问题四:spss 如何做验证性因子分析 spss20以上纳入了amos,就可以直接做了

我替别人做这类的数据分析蛮多的

问题五:spss 如何做验证性因子分析? spss不能做验证性因子分析哦,要用spss里面的amos模块才行

可以做专业数据分析哦

问题六:如何用验证性因子分析共同方法偏差 我使用的Lisrel,设定 1 个公因子数,使研究中的所有测量项目负荷于这一共同因子,如果模型拟合良好就可以说明存在一个可以解释大多数变异的公共因子。如果分析结果发现所用测量项目负荷于共同因子时的各项拟合指数都不好,则说明研究的共同方法偏差属于可接受范围。

问题七:验证性因子分析 共同方法变异 怎么做 我使用的Lisrel,设定 1 个公因子数,使研究中的所有测量项目负荷于这一共同因子,如果模型拟合良好就可以说明存在一个可以解释大多数变异的公共因子。如果分析结果发现所用测量项目负荷于共同因子时的各项拟合指数都不好,则说明研究的共同方法偏差属于可接受范围。

问题八:如何用 SPSS 进行验证性因子分析 SPSS 不能进行验证性因子分析,只能进行探索性因子分析

用别的软件啊:Amos、Lisrel、Mplus等

问题九:怎么用AMOS对问卷进行验证性因子分析 用amos来做比较好

构建好模型之后运行分析,根据拟合指数以及载荷等判断即可。(南心网 Amos效度分析)

问题十:如何用amos做验证性因子分析 验证性因子分析主要探讨潜变量之间的相关关系而不是因果关系,在SEM中,模型构建分为两块,一块是测量模型,一块是结构模型,测量模型是测量潜变量和观测指标的关系模型,而结构模型则是测量潜变量之间的关系模型;所谓验证性因子分析就是主要探讨结构模型中的相关关系,操作很简单,你把潜变量之间用双箭头联系起来就可以了,当然,这里要注意一点,如果根据理论或者经验推测某两个潜变量之间完全不存在相关的话,可以不用双箭头联系;另外,AMOS里面的 *** ysis properties 模块设置中有个output选项,你点击critical ratios for difference 选项(打勾),运行数据后在text output的报表中可以根据临界比率(p是否小于.05)来判断潜变量之间的关系强度是否显著,如果小于临界比率,建议取消对应的潜变量双箭头。

验证性因子分析,是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。尽管因子分析适合任何学科使用,但以社会科学居多。

目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。

 

因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。

探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。

验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。

 

在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:

探索性因子分析: 验证因子与分析项的对应关系,检验量表效度,非经典量表通常用探索性因子分析。

验证性因子分析: 验证因子与分析项的对应关系,检验量表效度,成熟量表通常用验证性因子分析。确认测量关系后,后续可进行路径分析/线性回归分析研究具体的影响关系。

路径分析: 用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。

结构方程模型SEM : 包括测量关系和影响关系。如果仅包括影响关系,此时称作路径分析(Path analysis,有时也称通径分析)。通常需要进行探索性因子分析和验证性因子分析,均保证测量关系无误之后,再进行结构方程模型构建。

从分析思路上看,建议先用探索性因子分析EFA构建模型,确定存在几个因子及各分析项与因子的对应关系,再用验证性因子分析CFA加以检验。

(1)模型设定

首先需要确定因子数及对应分析题项,顺序放入分析框内。

(2)模型拟合

通过因子载荷系数表格可以展示因子(潜变量)与分析项(显变量)之间的关系情况。如果因子与测量项间的对应关系出现严重偏差,或者因子载荷系数值过低,则需要删除掉该测量项。

分析时主要关注P值及标准载荷系数,建议结合SPSSAU给出的“分析建议”进行分析。

模型拟合指标用于整体模型拟合效度情况分析。

常用的拟合值及其判断标准,都展示在上表中,实际输出值在标准范围内及说明模型拟合程度较好。模型拟合指标非常多,通常下很难保证所有指标均达标,只要多数指标达标或接近标准值即可。

*常用指标包括卡方自由度比,GFI,RMSEA,RMR,CFI,NFI和NNFI。

(3)模型修正

根据模型拟合指标情况,评价模型的优劣,如果模型拟合情况不佳,则需要进一步修正模型。

MI指标越大说明该项与其他因子的相关性越强,MI过大时会干扰模型需要进行修正或剔除该项。

模型构建过程需要重复多次,以找到最优模型。同时SPSSAU会自动生成模型结果图。

(4)模型分析

在完成模型构建后,即可使用模型进行分析。验证性因子分析主要有三个方面的功能,分别是聚合效度、区分效度、共同方法偏差。

聚合效度

聚合效度,也叫做收敛效度。AVE和CR是用于判断聚合效度的常用指标,AVE>0.5,并且CR>0.7,则说明具有良好的聚合效度。如果AVE或CR值较低,可考虑移除某因子后重新分析聚合效度。

上图为SPSSAU输出的AVE、CR值指标表格,可以根据此表格进行查看。

区分效度

区分效度,常用的做法是将AVE根号值与‘相关系数值’进行对比,SPSSAU也会输出相应结果。

如果每个因子的AVE根号值均大于“该因子与其它因子的相关系数最大值”,说明具有良好的区分效度。

共同方法偏差

共同方法偏差,SPSSAU提供两种方法检验,一种是探索性因子分析(也称作Harman单因子检验方法),做法是将所有变量进行探索性因子分析,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,则判定存在共同方法偏差。

另一种是验证性因子分析,所有变量全部放在一个因子里面进行分析,如果测量出来显示模型的拟合指标无法达标,模型拟合不佳,说明所有的测量项并不应该同属于一个因子,也就说明数据无共同方法偏差问题。

 

验证性因子分析需要较大的样本量,通常建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。

一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。

绝大多数情况下均为一阶验证性因子分析。如果说验证性因子分析时为二阶模型,此时参数处选中‘二阶’即可。

一般来说,使用验证性因子分析需要有一定的理论基础支持,如果拟合指标不能达标,最好按照分析思路:探索性因子分析→验证性因子分析,进行分析。

以及对于不熟悉的步骤,建议大家阅读SPSSAU帮助手册的相关说明以及SPSSAU的教学视频。

验证性因子分析视频教学: https://www.bilibili.com/video/av69372013

因子分析是一种多变量化简技术,目的是分解原始变量,从中归纳出潜在的“类别”,相关性较强的指标归为一类,不同类间变量的相关性较低,每一类变量代表了一个“共同因子”,即一种内在结构,因子分析就是要寻找该结构。其分析方法有很多种,最常用的有两种:一是主成分分析方法;另外一种是一般因子分析法。通常所说的因子分析指的就是一般因子分析法,它通过原始变量的方差去构造因子,一般情况下,因子的数量总是要少于变量的数量。所以对于一般因子分析而言,如何正确解释因子将会比主成分分析更困难。

因子分析一般可以分成四步:

考察变量之间的相关性,判断是否要进行因子分析;

进行分析,按一定的标准确定提取的因子数目,一般要求特征值大于1;

考察因子的可解释性,并在必要时进行因子旋转,以寻求最佳解释方式;

计算出因子得分等中间指标,供进一步分析使用。

利用因子分析,可以把搜集到的比较杂乱的原始数据进行压缩,找出最重要的因子,并对其按照成因归类、整理,从中找出几条主线,帮助分析充满度的主要控制因素。

本研究中共统计岩性圈闭354个,参与统计分析和计算的圈闭有249个。由于其中的落空圈闭无法参与因子分析及充满度预测模型的建立,因此实际参与分析和预测的岩性油气藏为222个。初步地质分析后,选取平均孔隙度,%;平均渗透率,10-3μm2;排烃强度,104t/km2;与排烃中心的平面距离,km;与排烃中心的垂直距离,m;地层压力系数;砂体厚度,m;砂体面积,km2;有机质丰度,%;围岩厚度,m;平均埋深,m;共11个地质参数进行因子分析。

本研究按不同的成藏体系进行,建立其充满度预测模型并进行回代验证。同一成藏体系内的岩性油气藏的生、储、盖、圈、运、保等成藏条件相互影响、相互制约,关系密切,将同一成藏体系中的岩性油气藏又分别划分为构造-岩性、透镜体油气藏进行预测。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/473421.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-06
下一篇2023-06-06

发表评论

登录后才能评论

评论列表(0条)

    保存