标准差和标准误的区别:
1、表示含义不同:
(1)标准差是指离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
(2)标准误是样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。
2、反映情况不同:
(1)标准差在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。
标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
(2)标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
标准差和标准误的联系:标准误不是标准差,是多个样本平均数的标准差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方根误差。
扩展资料
1、标准差意义:
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
2、离均差平方和:
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。
为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
参考资料来源
百度百科-标准差
百度百科-标准误
小伙伴们知道什么是标准差与标准误吗?这两者有何关系?有何区别?下面就跟着我一起来看看吧。标准差与标准误关系与区别
在日常的统计分析中,标准差和标准误是一对十分重要的统计量,两者有区别也有联系。但是很多人却没有弄清其中的差异,经常性地进行一些错误的使用。对于标准差与标准误的区别,很多书上这样表达:标准差表示数据的离散程度,标准误表示抽样误差的大小。这样的解释可能对于许多人来说等于没有解释。 其实这两者的区别可以采用数据分布表达方式描述如下:如果样本服从均值为μ,标准差为δ的正态分布,即X~N(μ, δ2),那么样本均值服从均值为0,标准差为δ2/n的正态分布,即?~ N(μ,δ2/n)。这里δ为标准差,δ/n1/2为标准误。明白了吧,用统计学的方法解释起来就是这么简单。
可是,实际使用中总体参数往往未知,多数情况下用样本统计量来表示。那么,关于这两者的区别可以这样表述:标准差是样本数据方差的平方根,它衡量的是样本数据的离散程度标准误是样本均值的标准差,衡量的是样本均值的离散程度。而在实际的抽样中,习惯用样本均值来推断总体均值,那么样本均值的离散程度(标准误)越大,抽样误差就越大。所以用标准误来衡量抽样误差的大小。
在此举一个例子。比如,某学校共有500名学生,现在要通过抽取样本量为30的一个样本,来推断学生的数学成绩。这时可以依据抽取的样本信息,计算出样本的均值与标准差。如果我们抽取的不是一个样本,而是10个样本,每个样本30人,那么每个样本都可以计算出均值,这样就会有10个均值。也就是形成了一个10个数字的数列,然后计算这10个数字的标准差,此时的标准差就是标准误。但是,在实际抽样中我们不可能抽取10个样本。所以,标准误就由样本标准差除以样本量来表示。当然,这样的结论也不是随心所欲,而是经过了统计学家的严密证明的。
在实际的应用中,标准差主要有两点作用,一是用来对样本进行标准化处理,即样本观察值减去样本均值,然后除以标准差,这样就变成了标准正态分布而是通过标准差来确定异常值,常用的方法就是样本均值加减n倍的标准差。标准误的作用主要是用来做区间估计,常用的估计区间是均值加减n倍的标准误。
标准偏差反映的是个体观察值的变异,标准误反映的是样本均数之间的变异(即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度),标准误不是标准差,是样本平均数的标准差。 标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。
标准误差定义
标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。
设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差ζ等于:
(此处为一公式,显示不出来,你看下文字就可以知道这个公式是什么样的。)
由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差。测量时能够得到的是算术平均值(),它最接近真值(N),而且也容易算出测量值和算术平均值之差,称为残差(记为v)。理论分析表明①可以用残差v表示有限次(n次)观测中的某一次测量结果的标准误差ζ,其计算公式为
(此处为一公式,显示不出来,你看下文字就可以知道这个公式是什么样的。)
对于一组等精度测量(n次测量)数据的算术平均值,其误差应该更小些。理论分析表明,它的算术平均值的标准误差。有的书中或计算器上用符号s表示)与一次测量值的标准误差ζ之间的关系是
(此处为一公式,显示不出来,你看下文字就可以知道这个公式是什么样的。)
标准误差
需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为ζ时,则其中的任何一个测量值的误差εi有68.3%的可能性是在(-ζ,+ζ)区间内。
世界上多数国家的物理实验和正式的科学实验报告都是用标准误差评价数据的,现在稍好一些的计算器都有计算标准误差的功能,因此,了解标准误差是必要的。
猜你喜欢
1. 论文写作常见统计学问题处理技巧
2. 关于体育统计学论文
3. 统计类论文投稿
4. sci论文写作解析
5. 医学论文表格的规范化标准
6. 医学论文写作格式
标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别: ①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;②用途不同;标准差常用于表示变量值对均数波动的大小,与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误常用于表示样本统计量(样本均数,样本率)对总体参数(总体均数,总体率)的波动情况,用于估计参数的可信区间,进行假设检验等。③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,如果把样本均数看作一个变量值,则样本均数的标准误可称为样本均数的标准差;当样本含量不变时,标准误与标准差成正比;两者均可与均数结合运用,但描述的内容各不相同。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)