采用OLS的回归分析方法存在几方面的限制:
(1)不允许有多个因变量或输出变量
(2)中间变量不能包含在与预测因子一样的单一模型中
(3)预测因子假设为没有测量误差
(4)预测因子间的多重共线性会妨碍结果解释
(5)结构方程模型不受这些方面的限制
SEM的优点:
(1)SEM程序同时提供总体模型检验和独立参数估计检验;
(2)回归系数,均值和方差同时被比较,即使多个组间交叉;
(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系;
(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
Mplus交叉滞后模型参数估计方法是一种用于估计多变量样本关系的建模方法,既可以表示线性关系也可以捕捉非线性关系。Mplus可以拟合各种时序和非时序模型,其均以多个方程组表示。Mplus交叉滞后模型基于一种多变量数据分析方法,引入滞后变量来表示时间延迟效应。它包括自变量,滞后自变量和后续变量之间的延迟关系,以及因变量之间的关系。Mplus中的滞后模型使用多个约束条件来确定变量之间的关系,例如各变量的均衡变化特点、每个变量的当前和未来的关系以及它们之间的平稳性。估计滞后模型参数的方法涉及优化技术,包括最小二乘法、最大似然估计和最小残差方法。Mplus是用来估计滞后模型参数和检验它是否有效和有用的一种非常有效的统计分析软件。比重分析法
指通过计算某个维度所占维度总量的比例,从而去判断投放方向或投放效果。
公式:比重=某维度数值 / 总量 X 100%
倒推法
倒推法,是竞价推广中常用的一种方法,但更多被应用于战略目标的制定。
即:根据历史数据,将成交—线索—对话—点击—展现倒着进行推理的过程。
关键词四象限分析
关键词是竞价推广之根本,那么便可通过对关键词进行系统化分类,从而有针对性地进行优化。
通常,主要分为以下四类:
01 有对话成本低
像这类词,大都集中在品牌词等,且它属于优质词的一类,针对较为优秀的词可以进行放量操作
例如:加词、提价、放匹配等等。
02 有对话成本高
像这类词,主要集中在产品词和行业大词。
点击成本高,往往说明点击流量多且杂,这类情况建议有条件地放量操作,即:获取流量的同时,去控制流量的质量。
主要操作有:
加词、
优化账户结构(使账户流量结构更精准)
优化创意(利用创意筛选部分杂质流量)
03 无对话成本高
这种情况,往往都是没有集中词性,通常可根据以下两点来进行判断下一步的操作:
均价高还是低?
流量大还是小?
若流量很大,均价很低,往往通过优化页面来进行若均价很高,流量一般,便是进行降价操作若是因为流量意向低,建议进行收匹配操作。
04 效果差成本低
像这种情况,大多数都为“只点击一次就产生了对话”,我们就以为是优质词,便进行放量操作,但也有可能是意外。
营销流程表分析
通过每天罗列、收集账户中核心指标数据【消费、展现、点击、抵达、对话、线索、成交】,然后根据核心数据算出一些辅助数据,像【点击率、对话率、点击成本】等,通过将不同周期的数据进行对比,从而发现病种。
单一维度分析
指针对不同维度间的数据进行分析,从而确定优化方向。
单一维度主要可分为:产品维度、时段维度、设备维度、地区维度、关键词维度。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)