请教面板数据变量间的相关系数计算怎么做

请教面板数据变量间的相关系数计算怎么做,第1张

两个变量之间的相关系数,可以在SPSS中的correlation中计算得到。两组变量之间的相关系数如何计算呢?专研了一天,还是从竹庄家的网页里获得了最多的知识。

以下为转贴:

计算两组变量之间相关系数的最好(即最容易也最准确)方法是用LISREL、AMOS等结构方程模型(SEM)。如果A1-A3是一个潜在因子、B1-B5是另一个潜在因子。SEM可以同时检验这两个潜在因子内部各观测变量是否相关以及两个因子之间是否相关。

如果你没学过SEM而只想在SPSS里做,有几种变通方法,但是都比较麻烦一点,其结果略有差别。

一、因子分析(EFA):先分别对A1-A3和B1-B5做因子分析、并从中生成两个因子、最后在相关分析中计算因子之间的相关系数。如果这两组变量(尤其是B1-B5)每组各自存在2个或更多的因子,就有问题了。(当然,如果这种情况发生,用其它方法同样也会有问题。)

二、General Linear Model(GLM):选"Multivariate", 将A1-A3放入"Dependent Variables"、B1-B5放入"Covariate(s)",执行后在“Test of Between-Subjects Effects"的表底部,找到对应于A1-A3的三个"R Squared" ,求其平均,再求其平方根(squared root),就是两组变量的相关系数了。

三、在MANOVA里启用其Canonical Correlation,SPSS菜单中已找不到MANOVA了,要写如下的syntax:

MANOVA a1 a2 a3 WITH b1 b2 b3 b4 b5

/DISCRIM ALL ALPHA(1)

/PRINT=SIG(EIGEN DIM)

其产生很多个表格,最后的“Analysis of Variance -- design 1:Estimates of effects for canonical variables”给出了类似GLM的R Squared,然后再求平方根

四、如果使用SPSS15,它提供了一个"Canonical Correlations.sps"的syntax,可以调用,其结果的解读如上。

计算SEM自由度有两种方法:

1、 一种是计算数据中observed variables indicators (变量)

之间的相关系数(correlations)的个数,一般用k来表示变量的个数,其相关系数的个数则为 k X

(k–1) / 2。如你的例子中有12个变量,它们之间的相关系数应该有12 X 11 / 2 = 66。

2、另一种是计算数据所有变量之间的variance-covariance (方差-协方差) 的个数,公式为 k X (k + 1) / 2。在本例中,共有

12 X 13 /2 = 78。

3、“模型所需的信息”也有两种对应的算法。与相关系数对应的算法是模型中所需估计的parameters

(参数),包括factor loadings (因子负荷,即λ,本例中有12个)、coefficients of exogenous factors

(自变量因子对因变量因子的影响系数,即γ,本例中有2个)、 coefficients of endogenous factors

(因变量因子对因变量因子的影响系数,即в,本例中有1个),三者相加共有 12 + 2 + 1 = 15个参数需要被估计。

如果按方差-协方差计算的话,那么需要被估计的参数,除了以上的λ、γ和в以外,还需要加上每个errors

of indicators(变量的残差,即δ和ε,本例中有12个),四者相加为 12 + 2 + 1 + 12 = 27。

    结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。

    SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。

     测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。

    如何描述它们之间的关系?可以通过以下方式:

1. 若因子指标是连续的,用线性回归方程(linear regression equations);

2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

     结构模型 则在一个多元回归方程中描述了三种变量关系:

1. 因子之间的关系;

2. 观察变量之间的关系;

3. 因子和不作为因子指标的观察变量之间的关系。

    同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:

1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);

2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

    在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。

    以下特殊功能也可以通过SEM实现:

1. 单个或多组分析(Single or multiple group analysis);

2. 缺失值(Missing data);

3. 复杂的调查数据(Complex survey data);

4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);

5. 随机斜率(Random slopes);

6. 限制线性和非线性参数(Linear and non-linear parameter constraints);

7. 包括特定路径的间接作用(Indirect effects including specific paths);

8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);

9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);

10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。

    以上功能也适用于CFA和MIMIC。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/485951.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-12
下一篇2023-06-12

发表评论

登录后才能评论

评论列表(0条)

    保存