stata之中介效应分析

stata之中介效应分析,第1张

本篇记录下用stata进行中介分析,其中,自变量,中介变量和因变量均为连续变量。

中介分析可以用命令 sem ,即进行结构方程模型也是用这个命令,只不过中介分析没有测量模型而已。

其中,自变量(X)为 EC ,中介变量(M)为 SDO ,因变量(Y)为 forei 。

结果如下,可以看到,报告的是标准化系数,X到M结果显著,M到Y显著,控制M之后,X到Y不显著了。

对直接效应,间接效应和总效应进行估计的结果如下,最后一列为标准化系数,但是,没有相应的z值,和95%CI

使用命令 estat stdize 可以得到不同路径相应的标准化统计量。

路径a,b和c’的结果如下:

路径ab和总效应结果如下:

此外,还有个命令可以直接报告中介效应结果,即 medsem

结果如下,报告了两种检验中介效应的方法,以及中介效应是否存在的结论。

通过命令 help medsem 后可以详细了解该命令。

除了上述提到的两种检验中介效应的方法外,还有bootstrap法。

具体介绍可参见文献:

Fritz, M. S., &MacKinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect. Psychological Science, 18 (3), 233-239.

stata的实现方式是:

抽取5000个样本,时间有些长,得等会儿……结果如下:

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。

在之前的回答中我们已经了解了这种分析是用来对测量模型进行验证的。这个地方有点绕,因为在国内的教材也好,老师讲课也好,使用CFA虽然是针对测量模型进行的分析,但是其具体指向的是结构效度这一概念。在SEM里,我们是对测量模型(常见为CFA)和结构模型(常见为路径分析、中介效应分析等)二者进行拟合的判断。

这里又是测量又是结构的,很容易让人产生混乱,以至于在分析选择及处理上总是纠缠不清,同样另一位答主也在这点上有些搅。这里我们再明确一下CFA的用法:验证性因素分析是通过SEM的方法(仅仅是通过方法,其实和SEM本质上还是有区别的)对测量模型的拟合进行验证,以确认测量的结构效度的分析方法。

题目中的两种做法区别到底在哪?我们可以发现其实题目中的方法,即潜变量共变的方法是标准的CFA的做法。我们之前提到,CFA只对测量模型进行验证,那么在测量模型中,维度/因素间的关系我们是假设其相互对立的,或者不假设关系。基于此,通过前人研究做的假设放到一个CFA中进行关系的拟合判断事实上是并不符合CFA仅针对测量模型进行分析的条件的。

除了在方法1的基础上进行了维度潜变量拟合的验证外,又验证了一个假设的结构模型。这是典型的潜变量SEM的做法,或者说是进行结构模型分析。这是SEM的标准做法,但并不是CFA的标准做法。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/495536.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-15
下一篇2023-06-15

发表评论

登录后才能评论

评论列表(0条)

    保存