从站点到平台——探讨服务端高并发分布式架构演进

从站点到平台——探讨服务端高并发分布式架构演进,第1张

本文以淘宝作为例子,介绍从一百个并发到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则。

在介绍架构之前,为了避免部分读者对架构设计中的一些概念不了解,下面对几个最基础的概念进行介绍:

3.1 单机架构

以淘宝作为例子。在网站最初时,应用数量与用户数都较少,可以把Tomcat和数据库部署在同一台服务器上。浏览器往www.taobao.com发起请求时,首先经过DNS服务器(域名系统)把域名转换为实际IP地址10.102.4.1,浏览器转而访问该IP对应的Tomcat。

3.2 第一次演进:Tomcat与数据库分开部署

Tomcat和数据库分别独占服务器资源,显著提高两者各自性能。

3.3 第二次演进:引入本地缓存和分布式缓存

在Tomcat同服务器上或同JVM中增加本地缓存,并在外部增加分布式缓存,缓存热门商品信息或热门商品的html页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉,大大降低数据库压力。其中涉及的技术包括:使用memcached作为本地缓存,使用Redis作为分布式缓存,还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。

3.4 第三次演进:引入反向代理实现负载均衡

在多台服务器上分别部署Tomcat,使用反向代理软件(Nginx)把请求均匀分发到每个Tomcat中。此处假设Tomcat最多支持100个并发,Nginx最多支持50000个并发,那么理论上Nginx把请求分发到500个Tomcat上,就能抗住50000个并发。其中涉及的技术包括:Nginx、HAProxy,两者都是工作在网络第七层的反向代理软件,主要支持http协议,还会涉及session共享、文件上传下载的问题。

3.5 第四次演进:数据库读写分离

把数据库划分为读库和写库,读库可以有多个,通过同步机制把写库的数据同步到读库,对于需要查询最新写入数据场景,可通过在缓存中多写一份,通过缓存获得最新数据。其中涉及的技术包括:Mycat,它是数据库中间件,可通过它来组织数据库的分离读写和分库分表,客户端通过它来访问下层数据库,还会涉及数据同步,数据一致性的问题。

3.6 第五次演进:数据库按业务分库

把不同业务的数据保存到不同的数据库中,使业务之间的资源竞争降低,对于访问量大的业务,可以部署更多的服务器来支撑。这样同时导致跨业务的表无法直接做关联分析,需要通过其他途径来解决,但这不是本文讨论的重点,有兴趣的可以自行搜索解决方案。

3.7 第六次演进:把大表拆分为小表

比如针对评论数据,可按照商品ID进行hash,路由到对应的表中存储;针对支付记录,可按照小时创建表,每个小时表继续拆分为小表,使用用户ID或记录编号来路由数据。只要实时操作的表数据量足够小,请求能够足够均匀的分发到多台服务器上的小表,那数据库就能通过水平扩展的方式来提高性能。其中前面提到的Mycat也支持在大表拆分为小表情况下的访问控制。

这种做法显著的增加了数据库运维的难度,对DBA的要求较高。数据库设计到这种结构时,已经可以称为分布式数据库,但是这只是一个逻辑的数据库整体,数据库里不同的组成部分是由不同的组件单独来实现的,如分库分表的管理和请求分发,由Mycat实现,SQL的解析由单机的数据库实现,读写分离可能由网关和消息队列来实现,查询结果的汇总可能由数据库接口层来实现等等,这种架构其实是MPP(大规模并行处理)架构的一类实现。

目前开源和商用都已经有不少MPP数据库,开源中比较流行的有Greenplum、TiDB、Postgresql XC、HAWQ等,商用的如南大通用的GBase、睿帆 科技 的雪球DB、华为的LibrA等等,不同的MPP数据库的侧重点也不一样,如TiDB更侧重于分布式OLTP场景,Greenplum更侧重于分布式OLAP场景,这些MPP数据库基本都提供了类似Postgresql、Oracle、MySQL那样的SQL标准支持能力,能把一个查询解析为分布式的执行计划分发到每台机器上并行执行,最终由数据库本身汇总数据进行返回,也提供了诸如权限管理、分库分表、事务、数据副本等能力,并且大多能够支持100个节点以上的集群,大大降低了数据库运维的成本,并且使数据库也能够实现水平扩展。

3.8 第七次演进:使用LVS或F5来使多个Nginx负载均衡

由于瓶颈在Nginx,因此无法通过两层的Nginx来实现多个Nginx的负载均衡。图中的LVS和F5是工作在网络第四层的负载均衡解决方案,其中LVS是软件,运行在操作系统内核态,可对TCP请求或更高层级的网络协议进行转发,因此支持的协议更丰富,并且性能也远高于Nginx,可假设单机的LVS可支持几十万个并发的请求转发;F5是一种负载均衡硬件,与LVS提供的能力类似,性能比LVS更高,但价格昂贵。由于LVS是单机版的软件,若LVS所在服务器宕机则会导致整个后端系统都无法访问,因此需要有备用节点。可使用keepalived软件模拟出虚拟IP,然后把虚拟IP绑定到多台LVS服务器上,浏览器访问虚拟IP时,会被路由器重定向到真实的LVS服务器,当主LVS服务器宕机时,keepalived软件会自动更新路由器中的路由表,把虚拟IP重定向到另外一台正常的LVS服务器,从而达到LVS服务器高可用的效果。

此处需要注意的是,上图中从Nginx层到Tomcat层这样画并不代表全部Nginx都转发请求到全部的Tomcat,在实际使用时,可能会是几个Nginx下面接一部分的Tomcat,这些Nginx之间通过keepalived实现高可用,其他的Nginx接另外的Tomcat,这样可接入的Tomcat数量就能成倍的增加。

3.9 第八次演进:通过DNS轮询实现机房间的负载均衡

在DNS服务器中可配置一个域名对应多个IP地址,每个IP地址对应到不同的机房里的虚拟IP。当用户访问www.taobao.com时,DNS服务器会使用轮询策略或其他策略,来选择某个IP供用户访问。此方式能实现机房间的负载均衡,至此,系统可做到机房级别的水平扩展,千万级到亿级的并发量都可通过增加机房来解决,系统入口处的请求并发量不再是问题。

3.10 第九次演进:引入NoSQL数据库和搜索引擎等技术

当数据库中的数据多到一定规模时,数据库就不适用于复杂的查询了,往往只能满足普通查询的场景。对于统计报表场景,在数据量大时不一定能跑出结果,而且在跑复杂查询时会导致其他查询变慢,对于全文检索、可变数据结构等场景,数据库天生不适用。因此需要针对特定的场景,引入合适的解决方案。如对于海量文件存储,可通过分布式文件系统HDFS解决,对于key value类型的数据,可通过HBase和Redis等方案解决,对于全文检索场景,可通过搜索引擎如ElasticSearch解决,对于多维分析场景,可通过Kylin或Druid等方案解决。

当然,引入更多组件同时会提高系统的复杂度,不同的组件保存的数据需要同步,需要考虑一致性的问题,需要有更多的运维手段来管理这些组件等。

3.11 第十次演进:大应用拆分为小应用

按照业务板块来划分应用代码,使单个应用的职责更清晰,相互之间可以做到独立升级迭代。这时候应用之间可能会涉及到一些公共配置,可以通过分布式配置中心Zookeeper来解决。

3.12 第十一次演进:复用的功能抽离成微服务

如用户管理、订单、支付、鉴权等功能在多个应用中都存在,那么可以把这些功能的代码单独抽取出来形成一个单独的服务来管理,这样的服务就是所谓的微服务,应用和服务之间通过HTTP、TCP或RPC请求等多种方式来访问公共服务,每个单独的服务都可以由单独的团队来管理。此外,可以通过Dubbo、SpringCloud等框架实现服务治理、限流、熔断、降级等功能,提高服务的稳定性和可用性。

3.13 第十二次演进:引入企业服务总线ESB屏蔽服务接口的访问差异

通过ESB统一进行访问协议转换,应用统一通过ESB来访问后端服务,服务与服务之间也通过ESB来相互调用,以此降低系统的耦合程度。这种单个应用拆分为多个应用,公共服务单独抽取出来来管理,并使用企业消息总线来解除服务之间耦合问题的架构,就是所谓的SOA(面向服务)架构,这种架构与微服务架构容易混淆,因为表现形式十分相似。个人理解,微服务架构更多是指把系统里的公共服务抽取出来单独运维管理的思想,而SOA架构则是指一种拆分服务并使服务接口访问变得统一的架构思想,SOA架构中包含了微服务的思想。

3.14 第十三次演进:引入容器化技术实现运行环境隔离与动态服务管理

目前最流行的容器化技术是Docker,最流行的容器管理服务是Kubernetes(K8S),应用/服务可以打包为Docker镜像,通过K8S来动态分发和部署镜像。Docker镜像可理解为一个能运行你的应用/服务的最小的操作系统,里面放着应用/服务的运行代码,运行环境根据实际的需要设置好。把整个“操作系统”打包为一个镜像后,就可以分发到需要部署相关服务的机器上,直接启动Docker镜像就可以把服务起起来,使服务的部署和运维变得简单。

在大促的之前,可以在现有的机器集群上划分出服务器来启动Docker镜像,增强服务的性能,大促过后就可以关闭镜像,对机器上的其他服务不造成影响(在3.14节之前,服务运行在新增机器上需要修改系统配置来适配服务,这会导致机器上其他服务需要的运行环境被破坏)。

3.15 第十四次演进:以云平台承载系统

系统可部署到公有云上,利用公有云的海量机器资源,解决动态硬件资源的问题,在大促的时间段里,在云平台中临时申请更多的资源,结合Docker和K8S来快速部署服务,在大促结束后释放资源,真正做到按需付费,资源利用率大大提高,同时大大降低了运维成本。

所谓的云平台,就是把海量机器资源,通过统一的资源管理,抽象为一个资源整体,在之上可按需动态申请硬件资源(如CPU、内存、网络等),并且之上提供通用的操作系统,提供常用的技术组件(如Hadoop技术栈,MPP数据库等)供用户使用,甚至提供开发好的应用,用户不需要关系应用内部使用了什么技术,就能够解决需求(如音视频转码服务、邮件服务、个人博客等)。在云平台中会涉及如下几个概念:

高并发情况下要考虑的因素有很多:

服务器并发处理能力、响应时间;数据安全及一致性、锁机制;数据存储及访问性能...

系统架构按层级(水平)划分的话,在每一层都需要考虑好压力的分配,以最前端的网络接入层为例,一般做法是在高配机器上部署支持高并发的web服务器(如nginx)集群,后端映射个多个业务组件达到并发处理能力;在数据访问方面充分做好缓存,包括数据缓存、页面、甚至文件缓存,需要存储大量数据的情况下则考虑分布式。

不同应用场景的架构设计都存在差异!

一、什么是高并发

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),并发用户数等。

响应时间:系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间。

吞吐量:单位时间内处理的请求数量。

QPS:每秒响应请求数。在互联网领域,这个指标和吞吐量区分的没有这么明显。

并发用户数:同时承载正常使用系统功能的用户数量。例如一个即时通讯系统,同时在线量一定程度上代表了系统的并发用户数。

二、如何提升系统的并发能力

互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。

垂直扩展:提升单机处理能力。垂直扩展的方式又有两种:

(1)增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;

(2)提升单机架构性能,例如:使用Cache来减少IO次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;

在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。

不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。

水平扩展:只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践,是本文重点讨论的内容。

三、常见的互联网分层架构

常见互联网分布式架构如上,分为:

(1)客户端层:典型调用方是浏览器browser或者手机应用APP

(2)反向代理层:系统入口,反向代理

(3)站点应用层:实现核心应用逻辑,返回html或者json

(4)服务层:如果实现了服务化,就有这一层

(5)数据-缓存层:缓存加速访问存储

(6)数据-数据库层:数据库固化数据存储

整个系统各层次的水平扩展,又分别是如何实施的呢?

四、分层水平扩展架构实践

反向代理层的水平扩展

反向代理层的水平扩展,是通过“DNS轮询”实现的:dns-server对于一个域名配置了多个解析ip,每次DNS解析请求来访问dns-server,会轮询返回这些ip。

当nginx成为瓶颈的时候,只要增加服务器数量,新增nginx服务的部署,增加一个外网ip,就能扩展反向代理层的性能,做到理论上的无限高并发。

站点层的水平扩展

站点层的水平扩展,是通过“nginx”实现的。通过修改nginx.conf,可以设置多个web后端。

当web后端成为瓶颈的时候,只要增加服务器数量,新增web服务的部署,在nginx配置中配置上新的web后端,就能扩展站点层的性能,做到理论上的无限高并发。

服务层的水平扩展

服务层的水平扩展,是通过“服务连接池”实现的。

站点层通过RPC-client调用下游的服务层RPC-server时,RPC-client中的连接池会建立与下游服务多个连接,当服务成为瓶颈的时候,只要增加服务器数量,新增服务部署,在RPC-client处建立新的下游服务连接,就能扩展服务层性能,做到理论上的无限高并发。如果需要优雅的进行服务层自动扩容,这里可能需要配置中心里服务自动发现功能的支持。

数据层的水平扩展

在数据量很大的情况下,数据层(缓存,数据库)涉及数据的水平扩展,将原本存储在一台服务器上的数据(缓存,数据库)水平拆分到不同服务器上去,以达到扩充系统性能的目的。

互联网数据层常见的水平拆分方式有这么几种,以数据库为例:

按照范围水平拆分

每一个数据服务,存储一定范围的数据,上图为例:

这个方案的好处是:

(1)规则简单,service只需判断一下uid范围就能路由到对应的存储服务;

(2)数据均衡性较好;

(3)比较容易扩展,可以随时加一个uid[2kw,3kw]的数据服务;

不足是:

(1)请求的负载不一定均衡,一般来说,新注册的用户会比老用户更活跃,大range的服务请求压力会更大;

按照哈希水平拆分

每一个数据库,存储某个key值hash后的部分数据,上图为例:

这个方案的好处是:

(1)规则简单,service只需对uid进行hash能路由到对应的存储服务;

(2)数据均衡性较好;

(3)请求均匀性较好;

不足是:

(1)不容易扩展,扩展一个数据服务,hash方法改变时候,可能需要进行数据迁移;

这里需要注意的是,通过水平拆分来扩充系统性能,与主从同步读写分离来扩充数据库性能的方式有本质的不同。

通过水平拆分扩展数据库性能:

(1)每个服务器上存储的数据量是总量的1/n,所以单机的性能也会有提升;

(2)n个服务器上的数据没有交集,那个服务器上数据的并集是数据的全集;

(3)数据水平拆分到了n个服务器上,理论上读性能扩充了n倍,写性能也扩充了n倍(其实远不止n倍,因为单机的数据量变为了原来的1/n);

通过主从同步读写分离扩展数据库性能:

(1)每个服务器上存储的数据量是和总量相同;

(2)n个服务器上的数据都一样,都是全集;

(3)理论上读性能扩充了n倍,写仍然是单点,写性能不变;

缓存层的水平拆分和数据库层的水平拆分类似,也是以范围拆分和哈希拆分的方式居多,就不再展开。

五、总结

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。前者垂直扩展可以通过提升单机硬件性能,或者提升单机架构性能,来提高并发性,但单机性能总是有极限的,互联网分布式架构设计高并发终极解决方案还是后者:水平扩展。

互联网分层架构中,各层次水平扩展的实践又有所不同:

(1)反向代理层可以通过“DNS轮询”的方式来进行水平扩展;

(2)站点层可以通过nginx来进行水平扩展;

(3)服务层可以通过服务连接池来进行水平扩展;

(4)数据库可以按照数据范围,或者数据哈希的方式来进行水平扩展;

各层实施水平扩展后,能够通过增加服务器数量的方式来提升系统的性能,做到理论上的性能无限。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/517684.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-20
下一篇2023-06-20

发表评论

登录后才能评论

评论列表(0条)

    保存