介绍下intel以及amd芯片组发展史!

介绍下intel以及amd芯片组发展史!,第1张

AMD对于需要高性能计算和 IT 基础设施的企业用户来说, AMD 提供一系列解决方案。 o 1981年,AMD 287 FPU ,使用Intel 80287核心。产品的市场定位和性能与Intel 80287基本相同。也是迄今为止AMD公司 唯一生产过的FPU产品,十分稀有。 o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel 8080核心。产品的市场定位和性能与Intel同名产品基本相同。 o AMD 386(1991年)微处理器,核心代号P9,有SX和DX之分,分别与Intel 80386SX和DX相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器----内部总线32位,外部16位。AMD 386DX的性能与Intel 80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。 o AMD 486DX(1993年)微处理器,核心代号P4,AMD自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel。 o AMD 5X86(1995年)微处理器,核心代号X5,AMD公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品----33*4、133MHz,0.35微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。 o AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的"经典奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"经典奔腾"略强;浮点预算能力远远比不上"经典奔腾",但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小(惯例吧:)并且没有在中国大陆销售。 o AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX。 o K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上0.25微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,.K62也继承了AMD一贯的传统,同频型号比Intel产品价格要低25%左右,市场销量惊人。K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产:)。K6 3D曾经有一款非标准的250MHz产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。 o AMD于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了0.25微米制造工艺,集成256KB二级缓存(竞争对手Intel的新赛扬是128KB),并以CPU的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。 oAMD于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheduling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。 oAMD于2007下半年推出K10架构。 采用K10架构的 Barcelona为四核并有4.63亿晶体管。Barcelona是AMD第一款四核处理器,原生架构基于65nm工艺技术。和Intel Kentsfield四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。 ● Barcelona新特性解析:引入全新SSE128技术 Barcelona中的一项重要改进是被AMD称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。对于128位的SSE操作,K8处理器需要将其作为两个64位指令对待。也就是说,当一个128位 SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。 而Barcelona加宽了执行单元从64位到128位,所有128位的SSE操作不再需要进行解码分解为两个64位操作,并且浮点调度器也可以支持这种128位 SSE操作,提高了执行效率。 提高SSE指令执行单元带宽的同时,也会带来一些新的变化,也可以说是新的瓶颈:指令存取带宽。为了将并行处理器过程中解码数量最大化,Barcelona开始支持32字节每时钟周期的指令存取,而先前K8架构只支持16字节。32字节的指令存取带宽不仅对处理器SSE代码有帮助,同时对于整数指令也有效果。 ● Barcelona新特性解析:内存控制器再度强化 当年当AMD将内存控制器集成至CPU内部时,我们看到了崭新而强大的K8构架。如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。 Intel Xeon服务器所有使用的FB-DIMM内存一大优势是,可以同时执行读和写命令到AMB,而在标准的DDR2内存中,你只能同时进行一个操作,而且读和写的切换会有非常大的损失。如果是一连串的随机混合执行的话,将会带来非常严重的资源浪费,而如果是先全部读然后再转换到写的话,就可以避免性能的损失。K8内存控制器就采用读取优先于写的策略来提高运行效率,但是Barcelona则更加智能化。 但是读取的数据会被先存放在buffer中,而不采用先直接执行写,但当它的容量达到了极限就会溢出,为了避免这种情况,在此之前才对读写之间进行切换,同时可以带来带宽和延迟方面效率的提高。K8核心配备的是128-bits宽度的单内存控制器,但是在Barcelona中,AMD把它分割成两个64-bit,每个控制器可以独立的进行操作,因此它可以带来效率上的不小提升,尤其是在四核执行的环境下,每个核心可以独立占有内存访问资源。 Barcelonas中集成的北桥部分(注意不是主板北桥)也被设计成更高的带宽,更深的buffers将允许更高的带宽利用率,同时北桥自身已经可以使用未来的内存技术,比如DDR3。 内存控制器的预取功能是运用相当广泛、十分重要的一项功能。预取可以减少内存延迟对整体性能的负面影响。当NVIDIA发布nForce2主板时,重点介绍的就是nForce2芯片组的128位智能预取功能。Intel在发布Core 2处理器之时也强调了CORE构架每核心拥有三个预取单元。 K8构架中每个核心设计有2个预取器,一个是指令预取器,另一个是数据预取器。K8L构架的Barcelona保持了2个的数量,但在性能上有了较大的改进。一个明显的改进是数据预取器直接将数据寄存入L1缓存中,相比K8构架中寄存入L2缓存的做法,新的数据预取器准确率更高,速度更快,内存性能及CPU整体性能将得益于此。 ● Barcelona新特性解析:创新——三级缓存 受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。 处理器整合内存控制器可以说是一项杰作,拥有整合内存控制器的K8构架仅依靠512KB的L2缓存就能够击败当时的对手Pentium 4。直到现在的Athlon 64 X2也依然保持着Intel 2002年就已过时的512KB L2缓存。 现在Core 2已经拥有了4MB的L2缓存,看来Intel和AMD之间的缓存差距还将保持,因为Barcelona的L2缓存依然是512KB。相比之下,Intel四核的Kentsfield芯片拥有8MB的L2缓存,而2007年末上市的新型Penryn芯片将拥有12MB的L2缓存。 Barcelona的缓存体系和K8构架有一定的相似之处,它的四颗核心各拥有64KB的L1缓存和512KB的L2缓存。从简化芯片设计的角度来看,四核心共享巨大的L2缓存对K8L构架而言并不合适,所以AMD引入了L3缓存,得益于65nm工艺,Barcelona在一颗晶圆上集成四颗核心外,还集成了一块2MB容量的L3缓存。也就是说L3缓存与4颗内核同样原生于一块晶圆,其容量为最小2M起跳。同L2缓存一样,L3缓存也是独立的,L1缓存的数据和L3缓存的数据将不会重复。 Barcelona的缓存工作原理是:L2缓存是作为L1缓存的备用空间。L1缓存储存着CPU当前最需要的数据,而当空间不足时,一些不是最重要的数据就转移到L2缓存中。而当未来再次需要时,则从L2缓存中再次转移到L1缓存中。新加入的L3缓存延续了L2缓存的角色,四颗核心的L2缓存将溢出的数据暂时寄存在L3缓存中。 L1缓存和L2缓存依然分别是2路和16路,L3缓存则是32路。快速的32路L3缓存不仅可以更好的满足多任务并行,而且对单任务的执行也有着较大积极作用。尤其在3D运用方面,2MB的L3缓存将对性能产生极大的推进作用。 AMD全新45nm的Shanghai架构 2008年11月13日,AMD公司宣布其代号为“上海”的新一代45nm四核皓龙处理器已经广泛上市。“上海”性能最高提升达35%,而空载时的功耗可显著降低35%。新一代四核AMD皓龙处理器采用创新的设计,能够带来更高的虚拟化性能和每瓦性价比,帮助数据中心提高效率,降低复杂性,从而最大限度地满足IT管理者的需要,以更低的投入实现更高的产出。 AMD公司负责计算解决方案业务的高级副总裁Randy Allen表示:“新一代四核AMD皓龙处理器是在正确的时间诞生的一款正确的产品。堪称完美的提前推出,使之成为x86服务器性能的新王者。通过与OEM厂商和解决方案供应商等合作伙伴的紧密合作,AMD的创新技术在满足企业用户目前最基本需求的同时,还为其未来发展做好准备。自4年前AMD推出世界首款x86双核处理器以来,这一增强的新一代皓龙处理器带来了AMD产品性能和每瓦性价比的最大提升。” 领先的性能满足当今最迫切的商务需求 数据中心的管理者们面对日益增长的压力,诸如网络服务、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。 卓越的虚拟化性能 具有改进的AMD直连架构和AMD虚拟化技术(AMD-V(TM)),45nm四核皓龙处理器成为已有的基于AMD技术的虚拟化平台的不二选择,目前全球的OEM厂商已基于上一代AMD四核皓龙处理器推出了9款专门为虚拟化应用而设计的服务器。新一代处理器可提供更快的虚拟机转换时间,并优化快速虚拟化索引技术(RVI)的特性,从而提高虚拟机的效率,AMD的AMD-V(TM)还可以减少软件虚拟化的开销。 无与伦比的性价比 与历代的AMD皓龙处理器相比,新一代四核皓龙处理器带来了前所未有的性能和每瓦性能比显著增强,包括: o 以与上代四核皓龙处理器相同的功耗设计,大幅提高CPU时钟频率。这得益于处理器设计增强、AMD业界领先的45nm沉浸式光刻技术和超强的处理器设计与验证能力。 o L3缓存容量提高200%,达到6MB,增强虚拟化、数据库和Java等内存密集型应用的性能。 o 支持DDR2-800内存,与现有AMD皓龙处理器相比内存带宽实现了大幅提高,并且比竞品使用的Fully-Buffered DIMM具有更高的能效。 o 即将推出的超传输总线(TM)3.0 (HyperTransport(TM) 3.0)技术将进一步增强AMD革命性的直连架构,计划于2009年2季度将处理器之间的通信带宽提高到17.6GB/s。 无可匹敌的节能特性 AMD皓龙处理器业已带来了业界领先的X86服务器处理器每瓦性价比,与之相比,新一代45nm四核AMD皓龙处理器在空载状态的能耗可以大幅降低35%,而性能可提高达35%。“上海”采用了众多的新型节能技术:AMD智能预取技术,可允许处理器核心在空载时进入“暂停”状态,而不会对应用性能和缓存中的数据有任何影响,从而显著降低能耗;AMD CoolCore(TM) 技术能够关闭处理器中非工作区域以进一步节省能耗。 在平台配置相似的情况下,基于75瓦AMD 四核皓龙处理器的平台,与基于50瓦处理器的竞争平台相比,具有高达30%的每瓦性能比优势。相似平台配置下,基于AMD 四核皓龙处理器2380的平台,空载状态的功耗为138瓦;与之对比,基于英特尔四核处理器的平台在相同状态下的功耗则为179瓦。基于AMD 四核皓龙2380型号处理器的平台,在SPECpower_ssj(TM)2008基准测试中取得761ssj_ops/每瓦的总成绩 (308,089 ssj_ops @ 100% 的目标负载),而英特尔四核平台为总成绩为561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目标负载). 4 前所未有的平台稳定性 作为唯一用相同的架构提供2路到8路服务器处理器的x86微处理器制造商,AMD新一代45nm四核皓龙处理器在插槽和散热设计与上代四核和双核AMD皓龙处理器兼容,延续了AMD的领先地位。这可以帮助消费者减少平台管理的复杂性和费用,增强数据中心的正常运行时间和生产力。新的45nm处理器适用于现有的Socket 1207插槽架构,未来代号为“Istanbul”的AMD 下一代皓龙处理器也计划使用相同插槽。

o 采用直连架构的 AMD 皓龙(Opteron)(TM) 处理器可以提供领先的多技术。 使IT管理员能够在同一服务器上运行32位与64位应用软件,前提是该服务器使用的是64位操作系统。 o AMD 速龙(Athlon64),又叫阿斯龙(TM) 64 处理器可以为企业的台式电脑用户提供卓越的性能和重要的投资保护,具有出色的功能和性能,可以提供栩栩如生的数字媒体效果――包括音乐、视频、照片和 DVD 等。 o AMD 双核速龙(TM) 64(AthlonX2 64 )处理器可以提供更AMD双核速龙64处理器架构高的多任务性能,帮助企业在更短的时间内完成更多的任务(包括业务应用和视频、照片编辑,内容创建和音频制作等)。这些强大的功能使其成为那些即将上市的新型媒体中心的最佳选择。 o AMD 炫龙(TM) 64(Turion64) 移动计算技术可以利用移动计算领域的最新成果,提供最高的移动办公能力,以及领先的 64 位计算技术。 o AMD 闪龙(TM)(Sempron64) 处理器不仅可以为企业提供出色的性价比,而且可以提高员工的日常工作效率。 o AMD 羿龙(TM)(phenom)处理器 全新架构的4核处理器,进一步满足用户需求(在命名中取消“64”,因为现今的CPU都是64位的,不必再标明)。为满足消费者的不同需求,AMD近期也推出了3核羿龙产品! 对于消费者, AMD 也提供全系列 64 位产品。 o AMD 雷鸟(TM) (Thunderbird)处理器 o AMD 钻龙(TM) (Duron)处理器可以说是雷鸟的精简便宜版,架构和雷鸟处理器一样,其差别除了时脉较低之外,就是内建的L2 Cache,只有64K 。

INTEL

2000年:英特尔奔腾4(Pentium 4)处理器 基于英特尔奔腾4处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染3D图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有4200万个晶体管和仅为0.18微米的电路线。 英特尔首款微处理器4004的运行速率为108KHz,而现今的英特尔奔腾4处理器的初速率已经达到了1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要13秒。 2001年:英特尔至强(Xeon)处理器 英特尔至强处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新操作系统和应用选择。与基于英特尔 奔腾III至强处理器的系统相比,采用英特尔至强处理器的工作站根据应用和配置的不同,其性能预计可提升30%到90%左右。该处理器基于英特尔NetBurst?? 架构,设计用于为视频和音频应用、高级互联网技术及复杂3D图形提供所需要的计算动力。 2001年:英特尔安腾(Itanium)处理器 英特尔安腾处理器是英特尔推出的64位处理器家族中的首款产品。该处理器是在基于英特尔简明并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。 2002年:英特尔安腾2处理器(Itanium2) Intel Pentium 4 /Hyper Threading处理器 英特尔安腾2处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。 英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达3.06GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超执行绪技术的 Intel Pentium4处理器时脉达到3.2GHz。 2003年:英特尔 奔腾 M(Pentium M) /赛扬 M (Celeron M)处理器 英特尔奔腾M处理器,英特尔855芯片组家族以及英特尔PRO/无线2100网卡是英特尔迅驰?? 移动计算技术的三大组成部分。英特尔迅驰移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。 2005年:Intel Pentium D 处理器 首颗内含2个处理核心的Intel Pentium D处理器登场,正式揭开x86处理器多核心时代。(绰号胶水双核,被别人这样叫是有原因的,PD由于高频低能噪音大,所以才有这个称号) 2005年:Intel Core处理器 这是英特尔向酷睿架构迈进的第一步。但是,酷睿处理器并没有采用酷睿架构,而是介于NetBurst和Core之间(第一个基于Core架构的处理器是酷睿2)。最初酷睿处理器是面向移动平台的,它是英特尔迅驰3的一个模块,但是后来苹果转向英特尔平台后推出的台式机就是采用的酷睿处理器。 酷睿使双核技术在移动平台上第一次得到实现。与后来的酷睿2类似,酷睿仍然有数个版本:Duo双核版,Solo单核版。其中还有数个低电压版型号以满足对节电要求苛刻的用户的要求。 2006年:Intel Core 2 (酷睿2,俗称“扣肉”)/ 赛扬 Duo 处理器 Core微架构桌面/移动处理器:桌面处理器核心代号Conroe。将命名为Core 2 Duo/Extreme家族,其E6700 2.6GHz型号比先前推出之最强的Intel Pentium D 960(3.6GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含2.91亿个晶体管。移动处理器核心代号Merom。是迅驰3.5和迅驰4的处理器模块。当然这两种酷睿2有区别,最主要的就是将FSB由667MHz/533MHz提升到了800MHz。

英特尔公司( Intel Corporation )

网址:http://www.intel.com/ 是全球最大的半导体芯片制造商,它成立于1968年,具有35年产品创新和市场领导的历史。1971年,英特尔推出了全球第一个微处理器。这一举措不仅改变了公司的未来,而且对整个工业产生了深远的影响。微处理器所带来的计算机和互联网革命,改变了这个世界。

2002年2月,英特尔被美国《财富》周刊评选为全球十大“最受推崇的公司”之一, 名列第九。2002年接近尾声,美国《财富》杂志根据各公司在2002年度业务的表现、员工水平、管理质量、公司投资价值等六大准则排出了“2002年度最佳公司”。在这一排行榜上,英特尔公司荣登全球榜首。同时,在“2002全球最佳雇主”排行榜上,英特尔公司名列第28位。

2003年5月,《哈佛商业周刊·中文版》公布“2002年度中国最佳雇主”名单,英特尔(中国)有限公司名列第八。这是由全球著名人力资源公司HewittGlobalHRConsultingFirm*和《哈佛商业周刊·中文版》通过一项联合举办的企业内部员工调查结果评选出来的。2002年,英特尔公司的收入为268亿美元,净收入为31亿美元。2003年7月18日,英特尔公司成立35周年。英特尔公司首席执行官贝瑞特博士回顾说:“35年来,我们不懈地追求优秀与完美,这为我们能够不断推出创新理念并保持创新能力奠定了坚实的基础,也使得英特尔能在全球竞争最为激烈的行业中始终处于领先地位。我们的努力让世界发生了翻天覆地的变化,我们还将继续改变世界的未来,这也正是我们今天值得庆祝的。”

英特尔为全球日益发展的计算机工业提供建筑模块,包括微处理器、芯片组、板卡、系统及软件等。这些产品为标准计算机架构的组成部分。业界利用这些产品为最终用户设计制造出先进的计算机。今天,互联网的日益发展不仅正在改变商业运作的模式,而且也改变着人们的工作、生活、娱乐方式,成为全球经济发展的重要推动力。作为全球信息产业的领导公司之一,英特尔公司致力于在客户机、服务器、网络通讯、互联网解决方案和互联网服务方面为日益兴起的全球互联网经济提供建筑模块。

英特尔在中国的机构英特尔在中国(大陆)设有13个代表处,分布在北京、上海、广州、深圳、成都、重庆、沈阳、济南、福州、南京、西安、哈尔滨、武汉。公司的亚太区总部在香港特别行政区。英特尔在中国亦设有研究中心,即英特尔中国实验室,由4个不同研究中心组成,于2000年10月宣布成立。该中国实验室主要针对计算机的未来应用和产品的开发进行研究,旨在促进中国采用先进技术方面的进程,从而进一步推动国内互联网经济的发展。此外,英特尔中国实验室还负责协调该实验室与英特尔全球其他实验室的研究协作,以及资助国内高校和研究机构的研究项目的开发工作。英特尔公司全球副总裁兼首席技术官帕特·基辛格直接领导英特尔中国实验室的工作。

英特尔在中国的使命英特尔公司在中国的业务重点与其全球业务重点相一致,即成为全球互联网经济的构造模块的杰出供应商。除此之外,英特尔始终致力于成为推动中国信息技术发展的基石。在中国,这一战略可从英特尔在中国的一系列活动中得到反映:*技术启动:英特尔在中国设有英特尔中国实验室,由4个不同研究领域的实验室组成。如英特尔中国实验室,隶属于英特尔微处理器研究实验室,主要研究面向微处理器和平台架构的相关工作,推动英特尔处理器架构(IA)技术在业界的领导地位。

具体研究领域包括音频/视频信号处理和基于PC的相关应用,以及可以推动未来微结构和下一代处理器设计的高级编译技术和运行时刻系统研究。另外还有英特尔中国软件实验室、英特尔架构开发实验室、英特尔互联网交换架构实验室、英特尔无线技术开发中心。除此之外,英特尔还与国内著名大学和研究机构,如中国科学院计算所针对IA-64位编译器进行了共同研究开发,并取得了可喜的成绩。

2002年10月,英特尔公司宣布在深圳成立英特尔亚太区应用设计中心(ADC)。该中心面向中国计算和通信行业的OEM与ODM厂商,旨在满足他们对世界一流设计与校验服务的需求,并帮助他们为客户开发更出色的产品英特尔亚太地区应用设计中心(深圳)将为亚太区包括深圳和中国其它地区的客户就近提供先进的产品开发和技术支持服务,以协助亚太地区及中国的客户强化其在全球的竞争实力,并且促进这些客户相互间的合作。英特尔还通过战略投资事业部(IntelCapital)在中国进行IT技术方面的投资,以促进中国型技术,如无线通讯技术等方面的发展,从而促进全球互联网经济的发展。

迄今为止,英特尔的战略投资事业部已向亚太地区进行风险投资近6亿美元,其中在中国的投资近30家。*技术生产与制造:今天,英特尔在上海设有投资5亿美元的芯片测试和封装的工厂,为快闪存储器、I845芯片组和奔腾4处理器提供基于0.13微米工艺的世界一流的封装与测试,并为全球提供最高性能处理器产品;同时,也培养了大批的国内掌握世界一流芯片生产制造技术的知识工人。市场教育及应用普及:英特尔公司始终把协助推动中国计算机工业和互联网经济的发展作为公司在中国的首要策略。英特尔(中国)有限公司从2000年开始赞助ISEF中国区联系赛事。这一赛事被称为“中国青少年科学技术与创新大赛”,由中国科学技术协会*主办。2001年,中国派出16名学生参加在美国加州硅谷举行的第52届英特尔国际科学与工程大奖赛*,赢得了17项大奖,包括奖品、奖金及奖学金共计87000美元。2002年,英特尔ISEF在中国区的联系赛事在各地共吸引了1500万名中学生参加,其中有21名成绩优异的学生将被选派赴美参加5月在肯塔基州举办的第53届英特尔国际科学与工程大奖赛。2000年7月,英特尔未来教育项目在中国启动。

经过一年的时间,到2002年底,拟在中国共培训教师达100,000名,该项目已经在全国的18个省市展开,北京市、长春市、重庆市、甘肃省、海南省、河北省、内蒙古自治区、江苏省、上海市、陕西省、天津市、新疆维吾尔自治区、浙江省、淄博市开展实施了,得到中国教育部的大力支持和肯定,更获得各地教委和参加培训的老师的热烈欢迎。另外,为了更好地普及电脑教育,英特尔自1997年开始与国内电脑厂商合作,在全国16个城市开设了“英特尔电脑小博士工作室“,分别分布在北京、上海、广州、深圳、成都、天津、西安、沈阳、青岛、温州、杭州、济南、西藏、哈尔滨、无锡、南京,共培训家庭130万人次。*广泛的业界合作:英特尔自1985年进入中国以来,便将“与中国信息产业共同成长”视为己任。与国内OEM厂商、独立软件开发商、通讯设备制造商、解决方案供应商和无线通信厂商进行了密切广泛的合作。自2000年至今,英特尔每年在中国召开春秋两季的“英特尔信息技术峰会”(IntelDeveloperForum),与国内业界及时分享信息技术发展的趋势。2003年3月12日,英特尔在中国与全球同步推出了英特尔?迅驰?移动计算技术,它为移动计算的笔记本电脑用户提供了史无前例的、完全摆脱线缆束缚的“无线自由”的集计算和通讯之融合的体验。

INTEL微处理器的里程碑

1971 年: 4004 微处理器

4004 处理器是英特尔的第一款微处理器。这一突破性的重大发明不仅成为 Busicom 计算器强劲的动力之源,更打开了让机器设备象个人电脑一样可嵌入智能的未来之路。

1972 年: 8008 微处理器

8008 处理器拥有相当于 4004 处理器两倍的处理能力。《无线电电子学》 杂志 1974 年的一篇文章曾提及一种采用了 8008 处理器的设备 Mark-8,它是首批为家用目的而制造的电脑之一——不过按照今天的标准,Mark-8 既难于制造组装,又不容易维护操作。

1974 年: 8080 微处理器

世界上第一台个人电脑 Altair 采用了 8080 处理器作为大脑——据称 “Altair” 出自电视剧 《星际迷航 Star Trek》,是片中企业号飞船的目标地之一。电脑爱好者们花 395 美元就能购买一台 Altair。仅短短几个月时间,这种电脑就销售出了好几万台,创下历史上首次个人电脑延期交货的纪录

1978 年: 8086-8088 微处理器

英特尔与 IBM 新个人电脑部门所进行的一次关键交易使 8088 处理器成为了 IBM 新型主打产品 IBM PC 的大脑。8088 的大获成功使英特尔步入全球企业 500 强的行列,并被 《财富》 杂志评为“70 年代最成功企业”之一。

1982 年: 286 微处理器

英特尔 286 最初的名称为 80286,是英特尔第一款能够运行所有为其前代产品编写的软件的处理器。这种强大的软件兼容性亦成为英特尔微处理器家族的重要特点之一。在该产品发布后的 6 年里,全世界共生产了大约 1500 万台采用 286 处理器的个人电脑。

1985 年: 英特尔386™ 微处理器

英特尔386™ 微处理器拥有 275,000 个晶体管,是早期 4004 处理器的 100 多倍。该处理器是一款 32 位芯片,具有多任务处理能力,也就是说它可以同时运行多种程序。

1989 年: 英特尔486™ DX CPU 微处理器

英特尔486™ 处理器从真正意义上表明用户从依靠输入命令运行电脑的年代进入了只需点击即可操作的全新时代。史密森尼博物院国立美国历史博物馆的技术史学家 David K. Allison 回忆说,“我第一次拥有这样一台彩色显示电脑,并如此之快地在桌面进行我的排版工作。”英特尔486™ 处理器首次增加了一个内置的数学协处理器,将复杂的数学功能从中央处理器中分离出来,从而大幅度提高了计算速度。

1993 年: 英特尔 奔腾 处理器

英特尔 奔腾 处理器能够让电脑更加轻松地整合 “真实世界” 中的数据(如讲话、声音、笔迹和图片)。通过漫画和电视脱口秀节目宣传的英特尔 奔腾 处理器,一经推出即迅速成为一个家喻户晓的知名品牌。

1995 年: 英特尔 高能奔腾 处理器

于 1995 年秋季发布的英特尔 高能奔腾 处理器设计用于支持 32 位服务器和工作站应用,以及高速的电脑辅助设计、机械工程和科学计算等。每一枚英特尔 高能奔腾 处理器在封装时都加入了一枚可以再次提升速度的二级高速缓存存储芯片。强大的英特尔 高能奔腾 处理器拥有多达 550 万个晶体管。

1997 年: 英特尔 奔腾 II 处理器

英特尔 奔腾 II 处理器拥有 750 万个晶体管,并采用了英特尔 MMX™ 技术,专门设计用于高效处理视频、音频和图形数据。该产品采用了创新的单边接触卡盒(S.E.C)封装,并整合了一枚高速缓存存储芯片。有了这一芯片,个人电脑用户就可以通过互联网捕捉、编辑并与朋友和家人共享数字图片;还可以对家庭电影进行编辑和添加文本、音乐或情景过渡;甚至可以使用视频电话通过标准的电话线向互联网发送视频。

1998 年: 英特尔 奔腾 II 至强 处理器

英特尔 奔腾 II 至强 处理器设计用于满足中高端服务器和工作站的性能要求。遵照英特尔为特定市场提供专属处理器产品的战略,英特尔 奔腾 II 至强 处理器所拥有的技术创新专门设计用于工作站和服务器执行所需的商业应用,如互联网服务、企业数据存储、数字内容创作以及电子和机械设计自动化等。基于该处理器的计算机系统可配置四或八枚处理器甚至更多。

1999 年: 英特尔 赛扬 处理器

作为英特尔面向具体市场开发产品这一战略的继续,英特尔 赛扬 处理器设计用于经济型的个人电脑市场。该处理器为消费者提供了格外出色的性价比,并为游戏和教育软件等应用提供了出色的性能。

1999 年: 英特尔 奔腾 III 处理器

英特尔 奔腾 III 处理器的 70 条创新指令——因特网数据流单指令序列扩展(Internet Streaming SIMD extensions)——明显增强了处理高级图像、3D、音频流、视频和语音识别等应用所需的性能。该产品设计用于大幅提升互联网体验,让用户得以浏览逼真的网上博物馆和商店,并下载高品质的视频等。该处理器集成了 950 万个晶体管,并采用了 0.25 微米技术。

1999 年: 英特尔 奔腾 III 至强 处理器

英特尔 奔腾 III 至强 处理器在英特尔面向工作站和服务器市场的产品基础上进行了扩展,提供额外的性能以支持电子商务应用及高端商业计算。该处理器整合了英特尔 奔腾 III 处理器所拥有的 70 条 SIMD 指令,使得多媒体和视频流应用的性能显著增强。并且英特尔 奔腾 III 至强 处理器所拥有的先进的高速缓存技术加速了信息从系统总线到处理器的传输,使性能获得了大幅提升。该处理器设计用于多处理器配置的系统。

2000 年: 英特尔 奔腾 4 处理器

基于英特尔 奔腾 4 处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染 3D 图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有 4200 万个晶体管和仅为 0.18 微米的电路线。 英特尔首款微处理器 4004 的运行速率为 108KHz,而现今的英特尔 奔腾 4 处理器的初速率已经达到了 1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要 13 秒。

2001 年: 英特尔 至强 处理器

英特尔 至强 处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新操作系统和应用选择。与基于英特尔 奔腾 III 至强 处理器的系统相比,采用英特尔 至强 处理器的工作站根据应用和配置的不同,其性能预计可提升 30% 到 90% 左右。该处理器基于英特尔 NetBurst™ 架构,设计用于为视频和音频应用、高级互联网技术及复杂 3D 图形提供所需要的计算动力。

2001 年: 英特尔 安腾 处理器

英特尔 安腾 处理器是英特尔推出的 64 位处理器家族中的首款产品。 该处理器是在基于英特尔显式并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。

2002 年: 英特尔 安腾2 处理器 Intel Pentium 4 /Hyper Threading处理器

英特尔 安腾 2 处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。

英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达3.06 GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超执行绪技术的 Intel Pentium 4处理器时脉达到3.2 GHz。

2003 年: 英特尔 奔腾 M /赛扬 M 处理器

英特尔 奔腾 M 处理器,英特尔 855 芯片组家族以及英特尔 PRO/无线 2100 网卡是英特尔 迅驰™ 移动计算技术的三大组成部分。英特尔 迅驰™ 移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。

2005年 :Intel Pentium D 处理器

首颗内含2个处理核心的Intel Pentium D 处理器登场,正式揭开x86处理器多核心时代。

2006年:Intel Core 2 Duo / 赛扬 Duo 处理器

Core微架构桌面处理器,核心代号Conroe将命名为Core 2 Duo/Extreme家族,其E6700 2.6GHz型号比先前推出之最强的Intel Pentium D 960 (3.6GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含2.91亿个晶体管。

2007年: Intel 四核心服务器用处理器(即将推出)

英特尔一位高级官员周五透露,该公司可能在2007年初推出其首批四核心处理器,以夺回服务器市场的份额。据悉,英特尔这款代号Clovertown的新处理器将集成四个处理器于一体,让电脑能够更迅速处理数据或者同时运行更多应用程序,而较单核心处理器更省电。Clovertown是针对运行企业网络及支持互联网站点的服务器设计的。采用它的服务器将带有两个处理器插座,意味着电脑可以用多达八个内核处理数据。英特尔没有透露是否全部四个内核都在单一芯片上,或者Clovertown会采用两个捆绑在一起的双核心处理

前段时间,美哈佛大学出了一份报告,表示我国在多个尖端技术领域已经取得巨大进步。尤其是在5G、人工智能、量子计算等已取得全球领先,并开始占主导地位。

国内有专家说得很好,就是近十年来,我们跟美同时起步的技术,我们都能做到领先。现在某些方面落后的,大都是人家起步早的领域,像现在有差距的半导体方面。

不过,哈佛报告还预测,我国将成为全球成熟技术节点上最大的半导体生产国,并且未来十年我国将在半导体等核心技术上实现领先。果不其然,好消息很快传来。

第一,浙大超导量子芯片取得突破成果。 量子技术是未来 科技 竞争的一大重点,目前各国都在大力投入研发,可以说是已经展开竞赛,都希望在量子领域中占先机。

从之前的相关报道,我们也都可以看到量子计算机的优势已经非常明显,尤其是在计算速度方面更是快到惊人。而要实现稳定的量子计算机,量子芯片是其中的关键。

近日,我国在量子芯片方面又取得了突破,浙江大学发布了两款超导量子芯片。

其中,“莫干1号”采用全连通架构,包含32个超导量子比特,是目前超导量子芯片中比特数目最多的,主要是针对量子态的精确调控,以及多体物理的量子模拟。

“天目1号”芯片面向通用量子计算,采用了较易扩展的近邻连通架构,平均退相干时间为50微秒,处于世界前列。相比于“莫干1号”具备更高的编程灵活度。

浙大公布的两款量子芯片成果,充分证明我国在这方面已处于世界第一梯队水平。

第二,纯国产龙芯服务器芯片研发成功。 一直以来,在CPU上我们主要依赖国外,不管是日常工作生活用的电脑,还是服务器领域,CPU基本被英特尔和AMD垄断。

然而,随着国内对数据保密等方面的要求越来越高,对国产CPU的需求就越来越大。尤其是纯国产CPU更加期待,在这方面做得最好的就是中科院旗下龙芯中科。

在龙芯CPU首席科学家胡伟武的带领下,已推出了自主研发的三代龙芯国产CPU。

前段时间,龙芯3A5000系列通用CPU正式亮相,性能达到国际主流CPU水准。近日,中科院再次公布,面向服务器领域的纯国产CPU龙芯3C5000已经研发成功。

这款芯片有两个重要特点:其一是采用了自主架构LoongArch指令集,从内到外全纯国产设计,不再担心国外架构授权限制,之前都是使用国外X86或ARM架构。

其二是芯片性能很强大,综合性能表现不落后目前市场的主流服务器CPU,内部集成16个高性能的龙芯LA464处理器核。应用后,将大大提高我们数据的安全性。

第三,碳基芯片关键工艺课题通过验收 。 我们现在的芯片是硅基芯片,现在5nm正在量产,3nm预计明年下半年实现量产,接下来再往下发展就是2nm、1nm。

然而,由于硅基芯片技术由于受加工技术、器件物理极限等方面限制,已经接受物理极限,且成本高到已经不合适。因此,就需要寻找更加合适的下一代替代产品。

碳基芯片具有加工温度低、工作速度快、功耗低等优势,最有可能成为后摩尔时代集成电路的颠覆性技术之一。在这方面,我国也早就开始研发,并且还非常领先。

近日,好消息传来,多个部门组成的验收组,对“90 纳米碳基集成电路关键工艺研究”课题进行评审,在听取汇报、查看资料和样品实物后,一致通过了该课题研究。

并且,碳基芯片90 纳米工艺先导线正在建设中。别小看这个90纳米,根据研究成果估算,90纳米碳基芯片性能相当于28纳米硅基芯片,60纳米就相当于10纳米。

重点是,这个碳基芯片可以不用EUV光刻机,国产光刻机就可以。并且该课题开展过程,在 90 纳米材料制备、关键工艺及器件性能、应用 探索 等均取得了可喜成果,并且都处于世界领先水平。这次验收通过,表示碳基芯片距离商用又近了一大步。

以上的三个国产芯片突破,龙芯很快就可以应用,碳基芯片和量子芯片是在为未来打基础,这两种芯片将为我国未来芯片行业领先、不受限制奠定一个坚实的基础。

近日,我国半导体行业协会集成电路设计分会理事长魏少军,就芯片发展发表意见。

他表示,我国已经成为全球最为完整的芯片产品体系之一,不仅在中低端芯片领域具备较强的竞争力,在高端芯片领域也摆脱了全面依赖国外产品的被动局面。

魏少军所说的高端芯片不再全面依赖国外情况非常振奋人心,不过他主要是侧重设计方面,高端芯片设计的确已经达到全球领先,但在制造方面我们还有不小差距。

不过,从近期国内芯片行业的不断突破来看,我们在进步,问题终究会解决。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/536875.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-25
下一篇2023-06-25

发表评论

登录后才能评论

评论列表(0条)

    保存