Gpu服务器自带深度学习框架吗

Gpu服务器自带深度学习框架吗,第1张

Gpu服务器自带深度学习框架,GPU一个比较重要的优势就是他的内存结构,首先是共享内存,每个流处理器集群末端设有共享内存,提供深度学习框架。服务器性能主要决定于GPU的浮点运算能力,对深度学习任务来说,单精浮点运算以及更低的半精浮点运算性能则更为重要。

GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时GPU所采用的核心技术有硬件T&L、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬件T&L技术可以说是GPU的标志。

制造工艺

集成电路发展到纳米级工艺 ,不断逼近物理极限 ,出现了所谓红墙问题,一是线的延迟比门的延迟越来越重要。长线不仅有传输延迟问题,而且还有能耗问题。二是特征尺寸已小到使芯片制造缺陷不可避免,要从缺陷容忍、故障容忍与差错容忍等三个方面研究容错与避错技术。

以上内容参考  百度百科-gpu

GPU是显示卡的“心脏”,也就相当于CPU在电脑中的作用,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,称为“软加速”。3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“硬件加速”功能。显示芯片通常是显示卡上最大的芯片(也是引脚最多的)。现在市场上的显卡大多采用NVIDIA和ATI两家公司的图形处理芯片。

于是NVIDIA公司在1999年发布GeForce

256图形处理芯片时首先提出GPU的概念。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。GPU所采用的核心技术有硬体T&L、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬体T&L技术可以说是GPU的标志。

简单说GPU就是能够从硬件上支持T&L(Transform

and

Lighting,多边形转换与光源处理)的显示芯片,因为T&L是3D渲染中的一个重要部分,其作用是计算多边形的3D位置和处理动态光线效果,也可以称为“几何处理”。一个好的T&L单元,可以提供细致的3D物体和高级的光线特效;只不过大多数PC中,T&L的大部分运算是交由CPU处理的(这就也就是所谓的软件T&L),由于CPU的任务繁多,除了T&L之外,还要做内存管理、输入响应等非3D图形处理工作,因此在实际运算的时候性能会大打折扣,常常出现显卡等待CPU数据的情况,其运算速度远跟不上今天复杂三维游戏的要求。即使CPU的工作频率超过1GHz或更高,对它的帮助也不大,由于这是PC本身设计造成的问题,与CPU的速度无太大关系。

详细见

http://baike.baidu.com/view/1196.htm


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/550115.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-28
下一篇2023-06-28

发表评论

登录后才能评论

评论列表(0条)

    保存