机器步骤;
MPM(DEK)(印刷机)------CP/NXT/QP(元件贴打)------AOI(PCB元件贴打质量检测)-------BTU(高温回流焊)-------QC(质量检查)最后一个是就是QA(质量保证)
SMT的生产线,就是就是这样的
然后就是后道PTH(电子公司通常这样叫的)组装,测试,然后。。下面还有部门(太多了,我也不太清楚)直到成品电子产品出货
如果在SMT工作,这些东西必须了解!!!
下面是详细的介绍,你有时间也可以浏览一下。
SMT有何特点:
组装密度高、电子产品体积小、重量轻,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用SMT之后,电子产品体积缩小40%~60%,重量减轻60%~80%。
可靠性高、抗振能力强。焊点缺陷率低。
高频特性好。减少了电磁和射频干扰。
易于实现自动化,提高生产效率。降低成本达30%~50%。 节省材料、能源、设备、人力、时间等。 电脑贴片机,如图
为什么要用SMT:
电子产品追求小型化,以前使用的穿孔插件元件已无法缩小
电子产品功能更完整,所采用的集成电路(IC)已无穿孔元件,特别是大规模、高集成IC,不得不采用表面贴片元件
产品批量化,生产自动化,厂方要以低成本高产量,出产优质产品以迎合顾客需求及加强市场竞争力
电子元件的发展,集成电路(IC)的开发,半导体材料的多元应用
电子科技革命势在必行,追逐国际潮流
SMT 基本工艺构成要素:
丝印(或点胶)-->贴装 -->(固化) -->回流焊接 -->清洗 -->检测 -->返修
丝印:其作用是将焊膏或贴片胶漏印到PCB的焊盘上,为元器件的焊接做准备。所用设备为丝印机(丝网印刷机),位于SMT生产线的最前端。
点胶:它是将胶水滴到PCB的的固定位置上,其主要作用是将元器件固定到PCB板上。所用设备为点胶机,位于SMT生产线的最前端或检测设备的后面。
贴装:其作用是将表面组装元器件准确安装到PCB的固定位置上。所用设备为贴片机,位于SMT生产线中丝印机的后面。
固化:其作用是将贴片胶融化,从而使表面组装元器件与PCB板牢固粘接在一起。所用设备为固化炉,位于SMT生产线中贴片机的后面。
回流焊接:其作用是将焊膏融化,使表面组装元器件与PCB板牢固粘接在一起。所用设备为回流焊炉,位于SMT生产线中贴片机的后面。
清洗:其作用是将组装好的PCB板上面的对人体有害的焊接残留物如助焊剂等除去。所用设备为清洗机,位置可以不固定,可以在线,也可不在线。
检测:其作用是对组装好的PCB板进行焊接质量和装配质量的检测。所用设备有放大镜、显微镜、在线测试仪(ICT)、飞针测试仪、自动光学检测(AOI)、X-RAY检测系统、功能测试仪等。位置根据检测的需要,可以配置在生产线合适的地方。
返修:其作用是对检测出现故障的PCB板进行返工。所用工具为烙铁、返修工作站等。配置在生产线中任意位置。
SMT 之 IMC
IMC系Intermetallic compound 之缩写,笔者将之译为”介面合金共化物”。广义上说是指某些金属相互紧密接触之介面间,会产生一种原子迁移互动的行为,组成一层类似合金的”化合物”,并可写出分子式。在焊接领域的狭义上是指铜锡、金锡、镍锡及银锡之间的共化物。其中尤以铜锡间之良Cu6Sn5(Eta Phase)及恶性Cu3Sn(Epsilon Phase)最为常见,对焊锡性及焊点可靠度(即焊点强度)两者影响最大,特整理多篇论文之精华以诠释之
一、定义
能够被锡铅合金焊料(或称焊锡Solder)所焊接的金属,如铜、镍、金、银等,其焊锡与被焊底金属之间,在高温中会快速形成一薄层类似”锡合金”的化合物。此物起源于锡原子及被焊金属原子之相互结合、渗入、迁移、及扩散等动作,而在冷却固化之后立即出现一层薄薄的”共化物”,且事后还会逐渐成长增厚。此类物质其老化程度受到锡原子与底金属原子互相渗入的多少,而又可分出好几道层次来。这种由焊锡与其被焊金属介面之间所形成的各种共合物,统称Intermetallic Compound 简称IMC,本文中仅讨论含锡的IMC,将不深入涉及其他的IMC。
二、一般性质
由于IMC曾是一种可以写出分子式的”准化合物”,故其性质与原来的金属已大不相同,对整体焊点强度也有不同程度的影响,首先将其特性简述于下:
◎ IMC在PCB高温焊接或锡铅重熔(即熔锡板或喷锡)时才会发生,有一定的组成及晶体结构,且其生长速度与温度成正比,常温中较慢。一直到出现全铅的阻绝层(Barrier)才会停止(见图六)。
◎ IMC本身具有不良的脆性,将会损及焊点之机械强度及寿命,其中尤其对抗劳强度(Fatigue Strength)危害最烈,且其熔点也较金属要高。
◎ 由于焊锡在介面附近得锡原子会逐渐移走,而与被焊金属组成IMC,使得该处的锡量减少,相对的使得铅量之比例增加,以致使焊点展性增大(Ductillity)及固着强度降低,久之甚至带来整个焊锡体的松弛。
◎ 一旦焊垫商原有的熔锡层或喷锡层,其与底铜之间已出现”较厚”间距过小的IMC后,对该焊垫以后再续作焊接时会有很大的妨碍;也就是在焊锡性(Solderability)或沾锡性(Wettability)上都将会出现劣化的情形。
◎ 焊点中由于锡铜结晶或锡银结晶的渗入,使得该焊锡本身的硬度也随之增加,久之会有脆化的麻烦。
◎ IMC会随时老化而逐渐增厚,通常其已长成的厚度,与时间大约形成抛物线的关系,即:
δ=k √t,
k=k exp(-Q/RT)
δ表示t时间后IMC已成长的厚度。
K表示在某一温度下IMC
的生长常数。
T表示绝对温度。
R表示气体常数,
即8.32 J/mole。
Q表示IMC生长的活化能。
K=IMC对时间的生长常数,
以nm / √秒或μm / √日(
1μm / √日=3.4nm / √秒。
现将四种常见含锡的IMC在不同温度下,其生长速度比较在下表的数字中:
表1 各种IMC在不同温度中之生长速度(nm / √s)
金属介面 20℃ 100℃ 135℃ 150℃ 170℃
1. 锡 / 金 40
2. 锡 / 银 0.08 17-35
3. 锡 / 镍 0.08 1 5
4. 锡 / 铜 0.26 1.4 3.8 10
[注] 在170℃高温中铜面上,各种含锡合金IMC层的生长速率,也有所不同;如热浸锡铅为
5nm/s,雾状纯锡镀层为7.7(以下单位相同),锡铅比30/70的皮膜为11.2,锡铅比70/30的皮膜为12.0,光泽镀纯锡为3.7,其中以最后之光泽镀锡情况较好。
三、焊锡性与表面能
若纯就可被焊接之底金属而言,影响其焊锡性(Solderability)好坏的机理作用甚多,其中要点之一就是”表面自由能”(Surface Free Energy,简称时可省掉Free)的大小。也就是说可焊与否将取决于:
(1) 被焊底金属表面之表面能(Surface Energy),
(2) 焊锡焊料本身的”表面能”等二者而定。
凡底金属之表面能大于焊锡本身之表面能时,则其沾锡性会非常好,反之则沾锡性会变差。也就是说当底金属之表面能减掉焊锡表面能而得到负值时,将出现缩锡(Dewetting),负值愈大则焊锡愈差,甚至造成不沾锡(Non-Wetting)的恶劣地步。
新鲜的铜面在真空中测到的”表面能”约为1265达因/公分,63/37的焊锡加热到共熔点(Eutectic Point 183℃)并在助焊剂的协助下,其表面能只得380达因/公分,若将二者焊一起时,其沾锡性将非常良好。然而若将上述新鲜洁净的铜面刻意放在空气中经历2小时后,其表面能将会遽降到25达因/公分,与380相减不但是负值(-355),而且相去甚远,焊锡自然不会好。因此必须要靠强力的助焊剂除去铜面的氧化物,使之再活化及表面能之再次提高,并超过焊锡本身的表面能时,焊锡性才会有良好的成绩。
四、锡铜介面合金共化物的生成与老化
当熔融态的焊锡落在洁铜面的瞬间,将会立即发生沾锡(Wetting俗称吃锡)的焊接动作。此时也立即会有锡原子扩散(Diffuse)到铜层中去,而铜原子也同时会扩散进入焊锡中,二者在交接口上形成良性且必须者Cu6Sn5的IMC,称为η-phase(读做Eta相),此种新生”准化合物”中含锡之重量比约占60%。若以少量的铜面与多量焊锡遭遇时,只需3-5秒钟其IMC即可成长到平衡状态的原度,如240℃的0.5μm到340℃的0.9μm。然而在此交会互熔的同时,底铜也会有一部份熔进液锡的主体锡池中,形成负面的污染。
(a) 最初状态:当焊锡着落在清洁的铜面上将立即有η-phase Cu6Sn5生成,即图中之(2)部分。
(b) 锡份渗耗期:焊锡层中的锡份会不断的流失而渗向IMC去组新的Cu6Sn5,而同时铜份也会逐渐渗向原有的η-phase层次中而去组成新的Cu3Sn,即图中之(5)。此时焊锡中之锡量将减少,使得铅量在比例上有所增加,若于其外表欲再行焊接时将会发生缩锡。
(c) 多铅之阻绝层:当焊锡层中的锡份不断渗走再去组成更厚的IMC时,逐渐使得本身的含铅比例增加,最后终于在全铅层的挡路下阻绝了锡份的渗移。
(d) IMC的曝露:由于锡份的流失,造成焊锡层的松散不堪而露出IMC底层,而终致到达不沾锡的下场(Non-wetting)。
高温作业后经长时老化的过程中,在Eta-phase良性IMC与铜底材之间,又会因铜量的不断渗入Cu6Sn5中,而逐渐使其局部组成改变为Cu3Sn的恶性ε-phase(又读做Epsilon相)。其中铜量将由早先η-phase的40%增加到ε-phase的66%。此种老化劣化之现象,随着时间之延长及温度之上升而加剧,且温度的影响尤其强烈。由前述”表面能”的观点可看出,这种含铜量甚高的恶性ε-phase,其表面能的数字极低,只有良性η-phase的一半。因而Cu3Sn是一种对焊锡性颇有妨碍的IMC。
然而早先出现的良性η-phase Cu6Sn5, 却是良好焊锡性必须的条件。没有这种良性Eta相的存在,就根本不可能完成良好的沾锡,也无法正确的焊牢。换言之,必需要在铜面上首先生成Eta-phase的IMC,其焊点才有强度。否则焊锡只是在附着的状态下暂时冷却固化在铜面上而已,这种焊点就如同大树没有根一样,毫无强度可言。锡铜合金的两种IMC在物理结构上也不相同。其中恶性的ε-phase(Cu3Sn)常呈现柱状结晶(Columnar Structure),而良性的η-phase(Cu6Sn5)却是一种球状组织(Globular)。下图8此为一铜箔上的焊锡经长时间老化后,再将其弯折磨平抛光以及微蚀后,这在SEM2500倍下所摄得的微切片实像,两IMC的组织皆清晰可见,二者之硬度皆在500微硬度单位左右。
在IMC的增厚过程中,其结晶粒子(Grains)也会随时在变化。由于粒度的变化变形,使得在切片画面中量测厚度也变得比较困难。一般切片到达最后抛光完成后,可使用专门的微蚀液(NaOH
50/gl,加1,2-Nitrphenol 35ml/l,70℃下操作),并在超声波协助下,使其能咬出清晰的IMC层次,而看到各层结晶解里面的多种情况。现将锡铜合金的两种IMC性质比较如下:
两种锡铜合金IMC的比较
命名 分子式 含锡量W% 出现经过 位置所在 颜色 结晶 性能 表面能η-phase(Eta) Cu6Sn5 60% 高温融锡沾焊到清洁铜面时立即生成 介于焊锡或纯锡与铜之间的介面
白色 球状
组织
良性IMC
微焊接强度之必须甚高
ε-phase(Epsilon) Cu3Sn 30% 焊后经高温或长期老化而逐渐发生
介于Cu6Sn5与铜面之间
灰色 柱状
结晶
恶性IMC
将造成缩锡或不沾锡 较低只有Eta的一半,非常有趣的是,单纯Cu6Sn5的良性IMC,虽然分子是完全相同,但当生长环境不同时外观却极大的差异。如将清洁铜面热浸于熔融态的纯锡中,此种锡量与热量均极度充足下,所生成的Eta良性IMC之表面呈鹅卵石状。但若改成锡铅合金(63/37)之锡膏与热风再铜面上熔焊时,亦即锡量与热量不太充足之环境,居然长出另一种一短棒状的IMC外表(注意铜与铅是不会产生IMC的,且两者之对沾锡(wetting)与散锡(Spreading)的表现也截然不同。再者铜锡之IMC层一旦遭到氧化时,就会变成一种非常顽强的皮膜,即使薄到5层原子厚度的1.5nm,再猛的助焊剂也都奈何不了它。这就是为什么PTH孔口锡薄处不易吃锡的原因(C.Lea的名着A scientific Guide to SMT之P.337有极清楚的说明),故知焊点之主体焊锡层必须稍厚时,才能尽量保证焊锡性于不坠。事实上当”沾锡”(Wetting)之初,液锡以很小的接触角(Contact Angle)高温中迅速向外扩张(Spreading)地盘的同时,也另在地盘内的液锡和固铜之间产生交流,而向下扎根生成IMC,热力学方式之步骤,即在说明其假想动作的细节。
五、锡铜IMC的老化
由上述可知锡铜之间最先所形成的良性η-phase(Cu6Sn5),已成为良好焊接的必要条件。唯有这IMC的存在才会出现强度好的焊点。并且也清楚了解这种良好的IMC还会因铜的不断侵入而逐渐劣化,逐渐变为不良的ε-phase(Cu3Sn)。此两种IMC所构成的总厚度将因温度上升而加速长厚,且与时俱增。下表3.即为各种状况下所测得的IMC总厚度。凡其总IMC厚度愈厚者,对以后再进行焊接时之焊锡性也愈差。
表3. 不铜温度中锡铜IMC之不同厚度
所处状况 IMC厚度(mils)
熔锡板(指炸油或IR) 0.03~0.04
喷锡板 0.02~0.037
170℃中烤24小时 0.22以上
125℃中烤24小时 0.046
70℃中烤24小时 0.017
70℃中存贮40天 0.05
30℃中存贮2年 0.05
20℃中存贮5年 0.05
组装之单次焊接后 0.01~0.02
图12. 锡铜IMC的老化增厚,除与时间的平方根成比例关系外,并受到环境温度的强烈影响,在斜率上有很大的改变。
在IMC老化过程中,原来锡铅层中的锡份不断的输出,用与底材铜共组成合金共化物,因而使得原来镀锡铅或喷锡铅层中的锡份逐渐减少,进而造成铅份在比例上的不断增加。一旦当IMC的总厚度成长到达整个锡铅层的一半时,其含锡量也将由原来的60%而降到40%,此时其沾锡性的恶化当然就不言而喻。并由底材铜份的无限量供应,但表层皮膜中的锡量却愈来愈少,因而愈往后来所形成的IMC,将愈趋向恶性的Cu3Sn。
且请务必注意,一旦环境超过60℃时,即使新生成的Cu6Sn5也开始转变长出Cu3Sn来。 一旦这种不良的ε-phase成了气候,则焊点主体中之锡不断往介面溜走,致使整个主体皮膜中的铅量比例增加,后续的焊接将会呈现缩锡(Dewetting)的场面。这种不归路的恶化情形,又将随着原始锡铅皮膜层的厚薄而有所不同,越薄者还会受到空气中氧气的助虐,使得劣化情形越快。故为了免遭此一额外的苦难,一般规范都要求锡铅皮膜层至少都要在0.3mil以上。
老化后的锡铅皮膜,除了不良的IMC及表面能太低,而导致缩锡的效应外,镀铜层中的杂质如氧化物、有机光泽剂等共镀物,以及锡铅镀层中有机物或其它杂质等,也都会朝向IMC处移动集中,而使得缩锡现象雪上加霜更形恶化。
从许多种前人的试验及报告文献中,可知有三种加速老化的模式,可以类比出上述两种焊锡性劣化及缩锡现象的试验如下∶
◎ 在高温饱和水蒸气中曝置1~24小时。
◎ 在125~150℃的乾烤箱中放置4~16小时。
◎ 在高温水蒸气加氧气的环境中放置1小时;之后仅在水蒸气中放置24小时;再另於155℃的乾烤箱中放置4小时;及在40℃,90~95%RH环境中放置10天。如此之连续折腾
约等於1年时间的自然老化。 在经此等高温高湿的老化条件下,锡铅皮膜表面及与铜之介面上会出现氧化、腐蚀,及锡原子耗失(Depletion)等,皆将造成焊锡性的劣化。
六、锡金IMC
焊锡与金层之间的IMC生长比铜锡合金快了很多,由先后出现的顺序所得的分子式有AuSn
,AuSn2,AuSn4等。在150℃中老化300小时后,其IMC居然可增长到50μm(或2mil)之厚。因而镀金零件脚经过焊锡之后,其焊点将因IMC的生成太快,而变的强度减弱脆性增大。幸好仍被大量柔软的焊锡所包围,故内中缺点尚不曝露出来。又若当金层很薄时,例如是把薄金层镀在铜面上再去焊锡,则其焊点强度也很快就会变差,其劣化程度可由耐疲劳强度试验周期数之减少而清楚得知。
曾有人故意以热压打线法(Thermo-Compression,注意所用温度需低于锡铅之熔点)将金线压入焊锡中,于是黄金就开始向四周的焊锡中扩散,逐渐形成如图中白色散开的IMC。该金线原来的直径为45μm,经155℃中老化460小时后,竟然完全消耗殆尽,其效应实在相当惊人。但若将金层镀在镍面上,或在焊锡中故意加入少许的铟,即可大大减缓这种黄金扩散速度达5倍之多。
七、锡银IMC
锡与银也会迅速的形成介面合金共化物Ag3Sn,使得许多镀银的零件脚在焊锡之后,很快就会发生
银份流失而进入焊锡之中,使得银脚焊点的结构强度迅速恶化,特称为”渗银Silver leaching”。此种焊后可靠性的问题,曾在许多以钯层及银层为导体的“厚膜技术”(Thick Film Technology)中发生过,SMT中也不乏前例。若另将锡铅共融合金比例63/37的焊锡成分,予以小幅的改变而加入2%的银,使成为62/36/2的比例时,即可减轻或避免发生此一”渗银”现象,其焊点不牢的烦恼也可为之舒缓。最近兴起的铜垫浸银处理(Immersion Silver),其有机银层极薄仅4-6μm而已,故在焊接的瞬间,银很快就熔入焊锡主体中,最后焊点构成之IMC层仍为铜锡的Cu6Sn5,故知银层的功用只是在保护铜面而不被氧化而已,与有机护铜剂(OSP)之Enetk极为类似,实际上银本身并未参加焊接。
八、锡镍IMC
电子零件之接脚为了机械强度起见,常用黄铜代替纯铜当成底材。但因黄铜中含有多量的锌,对于焊锡性会有很大的妨碍,故必须先行镀镍当成屏障(Barrier)层,才能完成焊接的任务。事实上这只是在焊接的瞬间,先暂时达到消灾避祸的目的而已。因不久后镍与锡之间仍也会出现IMC,对焊点强度还是有不良的影响。
表4. 各种IMC在扩散系数与活化能方面的比较
System Intermetallic Compounds Diffusion Coefficient(m2/s) Activation Energy(J/mol)
Cu-Sn Cu6Sn5,Cu3Sn 1×106 80,000
Ni-Sn Ni3Sn2,Ni3Sn4,Ni3Sn7 2×107 68,000
Au-Sn AuSn,AuSn2 AuSn 3×104 73,000
Fe-Sn FeSnFeSn2 2×109 62,000
Ag-Sn Ag3Sn 8×109 64,000
在一般常温下锡与镍所生成的IMC,其生长速度与锡铜IMC相差很有限。但在高温下却比锡铜合金要慢了很多,故可当成铜与锡或金之间的阻隔层(Barrier Layer)。而且当环境温度不同时,其IMC的外观及组成也各不相同。此种具脆性的IMC接近镍面者之分子视为Ni3Sn4,接近锡面者则甚为分歧难以找出通式,一般以NiSn3为代表。根据一些实验数据,后者生长的速度约为前者的三倍。又因镍在空气非常容易钝化(Passivation),对焊锡性也会出现极其不利的影响,故一般在镍外表还要镀一层纯锡,以提高焊锡性。若做为接触(Contact)导电用途时,则也可镀金或银。
九、结论
各种待焊表面其焊锡性的劣化,以及焊点强度的减弱,都是一种自然现象。正如同有情世界的生老病死及无情世界的颓蚀风化一样均迟早发生,无法避免。了解发生的原因与过程之后,若可找出改善之道以延长其使用年限,即为上上之策矣。
无铅焊接考虑到环境和健康的因素,欧盟已通过立法将在2008年停止使用含铅钎料,美国和日本也正积极考虑通过立法来减少和禁止铅等有害元素的使用。 铅的毒害目前全球电子行业用钎料每年消耗的铅约为20000t,大约占世界铅年总产量的5%。铅和铅的化合物已被环境保护机构(EPA)列入前17种对人体和环境危害最大的化学物质之一。 无铅钎料 目前常用的含铅合金焊料粉末有锡一铅(Sn-Pb)、锡一铅一银(Sn-Pb-Ag)、锡一铅一铋(Sn-Pb-Bi)等,常用的合金成分为63%Sn/37%Pb以及62%Sn/36%Pb/2%Ag。不同合金比例有不同的熔化温度。对于标准的Sn63和Sn62焊料合金来说,回流温度曲线的峰值温度在203到230度之间。然而,大部分的无铅焊膏的熔点比Sn63合金高出30至45度,因此, 无铅钎料的基本要求目前国际上公认的无铅钎料定义是:以Sn为基体,添加了Ag、Cu、Sb、In其它合金元素,而Pb的质量分数在0.2%以下的主要用于电子组装的软钎料合金。无铅钎料不是新技术,但今天的无铅钎料研究是要寻求年使用量为5~6万吨的Sn-Pb钎料的替代产品。因此,替代合金应该满足以下要求:
(1)其全球储量足够满足市场需求。某些元素,如铟和铋,储量较小,因此只能作为无铅钎料中的微量添加成分
(2)无毒性。某些在考虑范围内的替代元素,如镉、碲是有毒的。而某些元素,如锑,如果改变毒性标准的话,也可以认为是有毒的
(3)能被加工成需要的所有形式,包括用于手工焊和修补的焊丝用于钎料膏的焊料粉用于波峰焊的焊料棒等。不是所有的合金能够被加工成所有形式,如铋的含量增加将导致合金变脆而不能拉拔成丝状
(4)相变温度(固/液相线温度)与Sn-Pb钎料相近
(5)合适的物理性能,特别是电导率、热导率、热膨胀系数
(6)与现有元件基板/引线及PCB材料在金属学性能上兼容
(7)足够的力学性能:剪切强度、蠕变抗力、等温疲劳抗力、热机疲劳抗力、金属学组织的稳定性
(8)良好的润湿性
(9)可接受的成本价格。
新型无铅钎料的成本应低于 22.2/kg,因此其中In的质量分数应小于1.5%,Bi含量应小于2.0%。 早期的研发计划集中于确定新型合金成分、多元相图研究和润湿性、强度等基本性能考察。后期的研发计划主要集中于五种合金系列:SnCu、SnAg、SnAgCu、SnAgCuSb和SnAgBi。并深入探讨其疲劳性能、生产行为和工艺优化。 表2.3 NCMS美国国家制造科学中心提出的无铅钎料性能评价标准 IPC也于2000年6月发布了研究报告“A guide line for assembly of lead-free electronics”。
目前国际上关于无铅钎料的主要结论如下:现在已经有很多种无铅钎料面世没有一种能够为SnPb钎料的直接替代提供全面的解决方案。
(1)对于某些特殊的工艺过程,某些特定的无铅钎料可以实现直接替代
(2)目前而言,最吸引人的无铅钎料是Sn-Ag-Cu系列。其他有潜力的组合包括Sn-0.7Cu、Sn-3.5Ag和Sn-Ag-Bi
(3)目前还没有合适的高铅高熔点钎料的无铅替代品
(4)目前看来,钎剂的化学系统不需要进行大的变动
(5)无铅钎料形成焊点的可靠性优于SnPb合金。
几种无铅钎料的对比
(1)SnCu:价格最便宜熔点最高力学性能最差。
(2)SnAg:力学性能良好,可焊性良好,热疲劳可靠性良好,共晶成分时熔点为221℃。SnAg和SnAgCu组合之间的差异很小,其选择主要取决于价格、供货等其他因素。
(3)SnAgCu(Sb):直到最近几年才知道Sn-Ag-Cu之间存在三元共晶,且其熔点低于Sn-Ag共晶,当然该三元共晶的准确成分还存在争议。与Sn-Ag和Sn-Cu相比,该组合的可靠性和可焊性更好。而且加入0.5%Sb后还可以进一步提高其高温可靠性。
(4)SnAgBi(Cu)(Ge):熔点较低,200~210℃可靠性良好在所有无铅钎料中可焊性最好,已得到Matsushita确认加入Cu或Ge可进一步提高强度缺点是含Bi带来润湿角上升缺陷的问题。
(5)SnZnBi:熔点最接近于Sn-Pb共晶但含Zn带来很多问题,如钎料膏保存期限、大量活性钎剂残渣、氧化问题、潜在腐蚀性问题。目前不推荐使用。 2.2 选择合金 由上,本次回流工艺设计焊料合金采用Sn/Ag/Cu合金(Sn/Ag3.0/Cu0.5),因为该合金被认为是国际工业中的首选并且得到了工业和研究公会成员的推荐。因为虽然一些公会还提议并且研究了另一种合金Sn/0.7Cu(质量百分比),一些企业在生产中也有采用这种合金。但是相对Sn/Cu合金的可靠性和可湿性,另外考虑到在回流焊和波峰焊中采用同种合金,Sn/Ag/Cu合金便成为工艺发展试验最好的选择。 Sn/Ag3.0/Cu0.5合金性能: 溶解温度:固相线217℃/液相线220℃;成本:0.10美元/cm3 与Sn/Cu焊料价格比:2.7 机械强度:48kg/mm2 延伸率:75% 湿润性:良 由Sn/Ag/Cu合金性能可知:焊料合金熔融温度比原Sn/Pb合金高出36℃,形成商品化后的价格也比原来提高。工艺焊接温度采用日本对此合金焊料的推荐工艺曲线,见图2.1。
日本推荐的无铅回流焊典型工艺曲线 说明:推荐的工艺曲线上有三个重要点:
(1) 预热区升温速度要尽量慢一些(选择数值2~3℃/s),以便控制由焊膏的塌边而造成焊点的桥接、焊锡球等。
(2) 预热要求必须在(45~90sec、120~160℃)范围内,以控制由PCB基板的温差及焊剂性能变化等因素而发生回流焊时的不良。
(3) 焊接的最高温度在230℃以上,保持20~30sec,以保证焊接的湿润性。 冷却速度选择-4℃/s 6 回流焊中出现的缺陷及其解决方案 焊接缺陷可以分为主要缺陷、次要缺陷和表面缺陷。凡使SMA功能失效的缺陷称为主要缺陷;次要缺陷是指焊点之间润湿尚好,不会引起SMA功能丧失,但有影响产品寿命的可能的缺陷;表面缺陷是指不影响产品的功能和寿命。它受许多参数的影响,如焊膏、基板、元器件可焊性、印刷、贴装精度以及焊接工艺等。我们在进行SMT工艺研究和生产中,深知合理的表面组装工艺技术在控制和提高SMT生产质量中起着至关重要的作用。
回流焊中的锡珠
(1) 回流焊中锡珠形成的机理 回流焊中出现的锡珠(或称焊料球),常常藏于矩形片式元件两焊端之间的侧面或细间距引脚之间,如图6.1、6.2。在元件贴装过程中,焊膏被置于片式元件的引脚与焊盘之间,随着印制板穿过回流焊炉,焊膏熔化变成液体,如果与焊盘和器件引脚等润湿不良,液态焊料会因收缩而使焊缝填充不充分,所有焊料颗粒不能聚合成一个焊点。部分液态焊料会从焊缝流出,形成锡珠。因此,焊料与焊盘和器件引脚的润湿性差是导致锡珠形成的根本原因。 图6.1 片式元件一例有粒度稍大的锡球 图6.2 比引脚四周有分散的锡球 锡膏在印刷工艺中,由于模板与焊盘对中偏移,若偏移过大则会导致锅膏漫流到焊盘外,加热后容易出现锡珠。贴片过程中Z轴的压力是引起锡珠的一项重要原因,往往不被人们历注意,部分贴片机由于Z铀头是依据元件的厚度来定位.故会引起元件贴到PCB上一瞬间将锡蕾挤压到焊盘外的现象,这部分组喜明显会引起锡珠。这种情况下产生的锡珠尺寸稍大,通常只要重新调节Z铀高度,就能防止锡珠的产生。
(2) 原因分析与控制方法 造成焊料润湿性差的原因很多,以下主要分析与相关工艺有关的原因及解决措施:
(1) 回流温度曲线设置不当。焊膏的回流与温度和时间有关,如果未到达足够的温度或时间,焊膏就不会回流。预热区温度上升速度过快,时间过短,使焊膏内部的水分和溶剂未完全挥发出来,到达回流焊温区时,引起水分、溶剂沸腾,溅出锡珠。实践证明,将预热区温度的上升速度控制在1~4℃/s是较理想的。
(2) 如果总在同一位置上出现锡珠,就有必要检查金属模板设计结构。模板开口尺寸腐蚀精度达不到要求,焊盘尺寸偏大,以及表面材质较软(如铜模板),会造成印刷焊膏的外形轮廓不清晰,互相桥接,这种情况多出现在对细间距器件的焊盘印刷时,回流焊后必然造成引脚间大量锡珠的产生。因此,应针对焊盘图形的不同形状和中心距,选择适宜的模板材料及模板制作工艺来保证焊膏印刷质量。
(3) 如果从贴片至回流焊的时间过长,则因焊膏中焊料粒子的氧化,焊剂变质、活性降低,会导致焊膏不回流,产生锡珠。选用工作寿命长一些的焊膏(我们认为至少4h),则会减轻这种影响。
(4) 另外,焊膏错印的印制板清洗不充分,会使焊膏残留于印制板表面及通孔中。回流焊之前,贴放元器件时,使印刷焊膏变形。这些也是造成锡珠的原因。因此应加强操作者和工艺人员在生产过程中的责任心,严格遵照工艺要求和操作规程进行生产,加强工艺过程的质量控制。 6.2 立片问题(曼哈顿现象) 形片式元件的一端焊接在焊盘上,而另一端则翘立,这种现象就称为曼哈顿现象,见图6.5。引起这种现象的主要原因是元件两端受热不均匀,焊膏熔化有先后所致。在以下情况会造成元件两端受热不均匀: 图6.5 立片现象 图6.6 元件偏离焊盘故两侧受力不平衡产生立片现象 。
(1)元件排列方向设计不正确。我们设想在回流焊炉中有一条横跨炉子宽度的回流焊限线,一旦焊膏通过它就会立即熔化,如图6.7所示。片式矩形元件的一个端头先通过回流焊限线,焊膏先熔化,完全浸润元件端头的金属表面,具有液态表面张力而另一端未达到183℃液相温度,焊膏未熔化,只有焊剂的粘接力,该力远小于回流焊焊膏的表面张力,因而,使未熔化端的元件端头向上直立。因此,应保持元件两端同时进入回流焊限线,使两端焊盘上的焊膏同时熔化,形成均衡的液态表面张力,保持元件位置不变。 图6.7 焊盘一侧锡青末熔化.两焊盘张力不平衡就会出现立碑。
(2)在进行汽相焊接时印制电路组件预热不充分。汽相焊是利用惰性液体蒸汽冷凝在元件引脚和PCB焊盘上时,释放出热量而熔化焊膏。汽相焊分平衡区和饱和蒸汽区,在饱和蒸汽区焊接温度高达217℃,在生产过程中我们发现,如果被焊组件预热不充分,经受100℃以上的温差变化,汽相焊的汽化力很容易将小于1206封装尺寸的片式元件浮起,从而产生立片现象。我们通过将被焊组件在高低温箱内145~150℃的温度下预热1~2min,然后在汽相焊的平衡区内再预热1min左右,最后缓慢进入饱和蒸汽区焊接,消除了立片现象。
(3)焊盘设计质量的影响。若片式元件的一对焊盘尺寸不同或不对称,也会引起印刷的焊膏量不一致,小焊盘对温度响应快,其上的焊膏易熔化,大焊盘则相反,所以,当小焊盘上的焊膏熔化后,在焊膏表面张力作用下,将元件拉直竖起。焊盘的宽度或间隙过大,也都可能出现立片现象。严格按标准规范进行焊盘设计是解决该缺陷的先决条件。 6.3 桥接 桥接也是SMT生产中常见的缺陷之一,它会引起元件之间的短路,遇到桥接必须返修。桥接这发生的过程。
(1)焊膏质量问题 锡膏中金属含量偏高,特别是印刷时间过久后.易出现金属含量增高;焊膏黏度低,预热后漫流到焊盘外;焊膏塌落度差,预热后汉漫到焊盘外,均会导致IC引脚桥接。 解决办法是调整锡膏。
(2)印刷系统 印刷机重复精度差,对位不齐,锡膏印刷到银条外,这种情况多见于细间距QFP生产;钢板对位不好和PCB对位不好以及钢板窗口尺寸/厚度设计不对与PCB焊盘设计合金镀层不均匀,导致的锡膏量偏多,均会造成桥接。 解决方法是调整印刷机,改善PCB焊盘涂覆层。
(3)贴放 贴放压力过大,锡膏受压后浸沉是生产中多见的原因,应调整Z轴高度。若有贴片精度不够,元件出现移位及IC引脚变形,则应针对原因改进。
(4)预热 升温速度过快,锡膏中溶剂来不及挥发。 6.4 吸料/芯吸现象 芯吸现象又称抽芯现象是常见焊接缺陷之一如图6.8,多见于汽相回流焊中。芯吸现象是焊料脱离焊盘沿引脚上行到引脚与芯片本体之间,会形成严重的虚焊现象。 图6.8 芯吸现象 产生的原因通常认为是元件引脚的导热率大.升温迅速,以致焊料优先润湿引脚,焊料与引脚之间的润湿力远大于焊料与焊盘之间的润湿力,引脚的上翘更会加剧芯吸现象的发生。在红外回流焊中,PCB基材与焊料中的有机助焊剂是红外线的优良吸收介质,而引脚却能部分反射红外线,相比而言,焊料优先熔化,它与焊盘的润湿力大于它与引脚之间的润湿力,故焊料不会沿引脚上升,发生芯吸现象的概率就小很多。 解决办法是:在汽相回流焊时应首先将SMA充分预热后再放入汽相炉中;应认真检查和保证PCB板焊盘的可焊性,可焊性不好的PCB不应用于生产;元件的共面性不可忽视,对共面性不良的器件不应用于生产。 6.5 焊接后印制板阻焊膜起泡 印制板组件在焊接后,会在个别焊点周围出现浅绿色的小泡,严重时还会出现指甲盖大小的泡状物,不仅影响外观质量,严重时还会影响性能,是焊接工艺中经常出现的问题之一。 阻焊膜起泡的根本原因,在于阻焊膜与阳基材之间存在气体/水蒸气。微量的气体/水蒸气会夹带到不同的工艺过程,当遇到高温时,气体膨胀,导致阻焊膜与阳基材的分层。焊接,焊盘温度相对较高,故气泡首先出现在焊盘周围。 现在加工过程经常需要清洗,干燥后再做下道工序,如腐刻后,应干燥后再贴阻焊膜,此时若干燥温度不够,就会夹带水汽进入下道工序。PCB加工前存放环境不好,湿度过高,焊接时又没有及时干燥处理;在波峰焊工艺中,经常使用含水的助焊剂,若PCB预热温度不够,助焊剂中的水汽会沿通孔的孔壁进入到PCB基板的内部,焊盘周围首先进入水汽,遇到焊接高温后这些情况都会产生气泡。 解决办法是; (1)应严格控制各个环节,购进的PCB应检验后入库.通常标准情况下,不应出现起泡现象; (2)PCB应存放在通风干燥环境下,存放期不超过6个月; (3)PCB在焊接前应放在烘箱中预烘105℃/4h~6h; 6.6 PCB扭曲 PCB扭曲问题是SMT大生产中经常出现的问题,它会对装配及测试带来相当大的影响,因此在生产中应尽量避免这个问题的出现,PCB扭曲的原因有如下几种: (1) PCB本身原材料选用不当,PCB的Tg低,特别是纸基PCB,其加工温度过高,会使PCB变弯曲。 (2) PCB设计不合理,元件分布不均会造成PCB热应力过大,外形较大的连接器和插座也会影响PCB的膨胀和收缩,乃至出现永久性的扭曲。 (3)双面PCB,若一面的铜箔保留过大(如地线),而另一面铜箔过少,会造成两面收缩不均匀而出现变形。 (4)回流焊中温度过高也会造成PCB的扭曲。 针对上述原因,其解决办法如下:在价格和空间容许的情况下,选用Tg高的PCB或增加PCB的厚度,以取得最佳长宽比;合理设计PCB,双面的钢箔面积应均衡,在没有电路的地方布满钢层,并以网络形式出现,以增加PCB的刚度,在贴片前对PCB进行预热,其条件是105℃/4h;调整夹具或夹持距离,保证PCB受热膨胀的空间;焊接工艺温度尽可能调低;已经出现轻度扭曲时,可以放在定位夹具中,升温复位,以释放应力,一般会取得满意的效果。 6.7 IC引脚焊接后引脚开路/虚焊 IC引脚焊接后出现部分引脚虚焊,是常见的焊接缺陷,产生的原因很多,主要原因,一是共面性差,特别是QFP器件.由于保管不当,造成引脚变形,有时不易被发现(部分贴片机没有检查共面性的功能),产生的过程如图6.9所示。 图6.9 共面性差的元件焊接后出现需焊 因此应注意器件的保管,不要随便拿取元件或打开包装。二是引脚可焊性不好。IC存放时间长,引脚发黄,可焊性不好也会引起虚焊,生产中应检查元器件的可焊性,特别注意比存放期不应过长(制造日期起一年内),保管时应不受高温、高湿,不随便打开包装袋。三是锡膏质量差,金属含量低,可焊性差,通常用于QFP器件的焊接用锡膏,金属含量应不低于90%。四是预热温度过高,易引起IC引脚氧化,使可焊性变差。五是模板窗口尺寸小,以致锡膏量不够。通常在模板制造后,应仔细检查模板窗口尺寸,不应太大也不应太小,并且注意与PCB焊盘尺寸相配套。 6.8片式元器件开裂 在SMC生产中,片式元件的开裂常见于多层片式电容器(MLCC),其原因主要是效应力与机械应力所致。 (1)对于MLCC类电容来讲,其结构上存在着很大的脆弱性,通常MLCC是由多层陶瓷电容叠加而成,强度低,极不耐受热与机械力的冲击。 (2)贴片过程中,贴片机z轴的吸放高度,特别是一些不具备z轴软着陆功能的贴片机,吸放高度由片式元件的厚度而不是由压力传感器来决定,故元件厚度的公差会造成开裂。 (3)PCB的曲翘应力,特别是焊接后,曲翘应力容易造成元件的开裂。 (4)一些拼板的PCB在分割时,会损坏元件。 预防办法是:认真调节焊接工艺曲线,特别是预热区温度不能过低;贴片时应认真调节贴片机z轴的吸放高度;应注意拼板的刮刀形状;PCB的曲翘度.特别是焊接后的曲翘度,应有针对性的校正,如是PCB板材质量问题,需另重点考虑。 6.9其他常见焊接缺陷 (1)差的润湿性 差的润湿性,表现在PCB焊盘吃锡不好或元件引脚吃锡不好。 产生的原因:元件引脚PCB焊盘已氧化/污染;过高的回流焊温度;锡膏的质量差。均会导致润湿性差,严重时会出现虚焊。 (2)锡量很少 锡量很少,表现在焊点不饱满,IC引脚根弯月面小。 产生原因:印刷模板窗口小;灯芯现象(温度曲线差);锡膏金属含量低。这些均会导致锡量小,焊点强度不够。 (3)引脚受损 引脚受损,表现在器件引脚共面性不好或弯曲,直接影响焊接质量。 产生原因:运输/取放时碰坏。为此应小心地保管元器件,特别是FQFP。 (4)污染物覆盖了焊盘 污染物覆盖了焊盘,生产中时有发生。 产生原因:来自现场的纸片;来自卷带的异物;人手触摸PCB焊盘或元器件;字符图位置不对。因而生产时应注意生产现场的清洁,工艺应规范。 (5)锡膏量不足 锡膏量不足,生产中经常发生的现象。 产生原因:第一块PCB印刷/机器停止后的印刷;印刷工艺参数改变;钢板窗口堵塞;锡膏品质变坏。上述原因之一,均会引起锡音量不足,应针对性解决问题。 (6)锡膏呈角状 锡膏呈角状,生产中经常发生,且不易发现、严重时会连焊。 产生原因:印刷机的抬网速度过快;模板孔壁不光滑,易使锡膏呈元宝状。 7 总结 目前国内外已经对无铅焊接技术进行了大量的研究,对提出的多种无铅焊料包括Sn-Cu系列、Sn-Ag-Cu系列、Sn-Ag-Bi-Cu系列、Sn-Bi系列、Sn-Sb系列等都有较为深入的研究。国际工业研究会等电子行业协会对典型的合金材料例如Sn-Ag-Cu系列的几种合金比例也有推荐的工艺参数;一些有实力的企业更是在此研究成果的基础上进行反复试验研究对工艺参数不断优化,尽可能取得最大程度上的效益。本课题参照国内外文献资料和有关期刊,选择适当参数;并选定SMT相关网站中登出市场上符合工艺要求的回流焊设备组成无铅回流焊的工艺过程。最后对焊接过程中可能出现的焊接缺陷作出理论分析,并提出相对的解决方案。 本课题是工艺的理论研究,由于设备欠缺、更因为本人SMT方面知识的浅薄不全面,出现谬误在所难免。望各位批评指正,不胜感激。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)