ClickHouse集群方案测评

ClickHouse集群方案测评,第1张

回合对战数据指标计算,耗时过长,甚至因为单机内存不足无法满足需求,故考虑将原本单节点的单机ClickHouse改为集群 , 采用分布式表来进行相关计算。

数据量 : 26910101 Rows

方案一 : 单机方案( 全量数据插入单机表 )

方案二 : 集群方案( 数据写入物理表,分别并行向3台机器物理表写入数据 )

结论 : 写入数据速度和磁盘IO有关 , 集群方案数据写入相比单机方案有显著优势。

(1)分布式建表方法

(2)分组查询

SQL语句 : select count(*) , accountId,pvpId from rd.rd_baseinfo where ds>='2019-12-01' and ds<'2020-01-01' group by accountId ,pvpId

结论 : 集群方案对数据分类查询效率比单机高出25%左右。

(3)关联查询

结论 : 小数据量join操作 , 单机方案和集群方案差异很小 大数据量单机方案不如集群方案 , 单机方案还可能会存在内存不足等问题。

ClickHouse并发较小 , 官网查询建议100 Queries / second , 单机ClickHouse不适合做业务型高并发查询。ClickHouse集群可以通过chproxy 将并发的查询代理到集群上各分片上去作查询 , 可以极大提高了并发量。

单机方案写数据的性能上远不如集群方案。

查询方面, 数据量小时的查询单机方案和集群方案相差不明显, 数据量大时集群方案不会存在内存,cup不足等问题,同时查询的效率也高于单机方案。

集群方案相较于单机方案 , 建表略有繁琐 , 分布式表写数据无法实时写入各个分片物理表 , 而会先写入内存然后同步到各个分片,故我们需要向每个分片的物理表同时写入数据。

综上, 目前round和roundData数据量越来越大 ,搭建集群分布式存储数据方案是可行的。

通常,为了提高网站响应速度,总是把热点数据保存在内存中而不是直接从后端数据库中读取。Redis是一个很好的Cache工具。大型网站应用,热点数据量往往巨大,几十G上百G是很正常的事儿,在这种情况下,如何正确架构Redis呢?

首先,无论我们是使用自己的物理主机,还是使用云服务主机,内存资源往往是有限制的,scale up不是一个好办法,我们需要scale out横向可伸缩扩展,这需要由多台主机协同提供服务,即分布式多个Redis实例协同运行。

其次,目前硬件资源成本降低,多核CPU,几十G内存的主机很普遍,对于主进程是单线程工作的Redis,只运行一个实例就显得有些浪费。同时,管理一个巨大内存不如管理相对较小的内存高效。因此,实际使用中,通常一台机器上同时跑多个Redis实例。

方案

1.Redis官方集群方案 Redis Cluster

Redis Cluster是一种服务器Sharding技术,3.0版本开始正式提供。

Redis

Cluster中,Sharding采用slot(槽)的概念,一共分成16384个槽,这有点儿类似前面讲的pre

sharding思路。对于每个进入Redis的键值对,根据key进行散列,分配到这16384个slot中的某一个中。使用的hash算法也比较简

单,就是CRC16后16384取模。

Redis集群中的每个node(节点)负责分摊这16384个slot中的一部分,也就是说,每个

slot都对应一个node负责处理。当动态添加或减少node节点时,需要将16384个槽做个再分配,槽中的键值也要迁移。当然,这一过程,在目前实

现中,还处于半自动状态,需要人工介入。

Redis集群,要保证16384个槽对应的node都正常工作,如果某个node发生故障,那它负责的slots也就失效,整个集群将不能工作。

了增加集群的可访问性,官方推荐的方案是将node配置成主从结构,即一个master主节点,挂n个slave从节点。这时,如果主节点失

效,Redis Cluster会根据选举算法从slave节点中选择一个上升为主节点,整个集群继续对外提供服务。这非常类似前篇文章提到的Redis

Sharding场景下服务器节点通过Sentinel监控架构成主从结构,只是Redis Cluster本身提供了故障转移容错的能力。

Redis

Cluster的新节点识别能力、故障判断及故障转移能力是通过集群中的每个node都在和其它nodes进行通信,这被称为集群总线(cluster

bus)。它们使用特殊的端口号,即对外服务端口号加10000。例如如果某个node的端口号是6379,那么它与其它nodes通信的端口号是

16379。nodes之间的通信采用特殊的二进制协议。

对客户端来说,整个cluster被看做是一个整体,客户端可以连接任意一个

node进行操作,就像操作单一Redis实例一样,当客户端操作的key没有分配到该node上时,Redis会返回转向指令,指向正确的node,这

有点儿像浏览器页面的302 redirect跳转。

Redis Cluster是Redis 3.0以后才正式推出,时间较晚,目前能证明在大规模生产环境下成功的案例还不是很多,需要时间检验。

2.Redis Sharding集群

Redis 3正式推出了官方集群技术,解决了多Redis实例协同服务问题。Redis Cluster可以说是服务端Sharding分片技术的体现,即将键值按照一定算法合理分配到各个实例分片上,同时各个实例节点协调沟通,共同对外承担一致服务。

多Redis实例服务,比单Redis实例要复杂的多,这涉及到定位、协同、容错、扩容等技术难题。这里,我们介绍一种轻量级的客户端Redis Sharding技术。

Redis

Sharding可以说是Redis

Cluster出来之前,业界普遍使用的多Redis实例集群方法。其主要思想是采用哈希算法将Redis数据的key进行散列,通过hash函数,特定

的key会映射到特定的Redis节点上。这样,客户端就知道该向哪个Redis节点操作数据。Sharding架构如图:

庆幸的是,java redis客户端驱动jedis,已支持Redis Sharding功能,即ShardedJedis以及结合缓存池的ShardedJedisPool。

Jedis的Redis Sharding实现具有如下特点:

用一致性哈希算法(consistent

hashing),将key和节点name同时hashing,然后进行映射匹配,采用的算法是MURMUR_HASH。采用一致性哈希而不是采用简单类

似哈希求模映射的主要原因是当增加或减少节点时,不会产生由于重新匹配造成的rehashing。一致性哈希只影响相邻节点key分配,影响量小。

2.

为了避免一致性哈希只影响相邻节点造成节点分配压力,ShardedJedis会对每个Redis节点根据名字(没有,Jedis会赋予缺省名字)会虚拟

化出160个虚拟节点进行散列。根据权重weight,也可虚拟化出160倍数的虚拟节点。用虚拟节点做映射匹配,可以在增加或减少Redis节点

时,key在各Redis节点移动再分配更均匀,而不是只有相邻节点受影响。

3.ShardedJedis支持keyTagPattern模式,即抽取key的一部分keyTag做sharding,这样通过合理命名key,可以将一组相关联的key放入同一个Redis节点,这在避免跨节点访问相关数据时很重要。

Redis Sharding采用客户端Sharding方式,服务端Redis还是一个个相对独立的Redis实例节点,没有做任何变动。同时,我们也不需要增加额外的中间处理组件,这是一种非常轻量、灵活的Redis多实例集群方法。

当然,Redis Sharding这种轻量灵活方式必然在集群其它能力方面做出妥协。比如扩容,当想要增加Redis节点时,尽管采用一致性哈希,毕竟还是会有key匹配不到而丢失,这时需要键值迁移。

作为轻量级客户端sharding,处理Redis键值迁移是不现实的,这就要求应用层面允许Redis中数据丢失或从后端数据库重新加载数据。但有些时候,击穿缓存层,直接访问数据库层,会对系统访问造成很大压力。有没有其它手段改善这种情况?

Redis

作者给出了一个比较讨巧的办法--presharding,即预先根据系统规模尽量部署好多个Redis实例,这些实例占用系统资源很小,一台物理机可部

署多个,让他们都参与sharding,当需要扩容时,选中一个实例作为主节点,新加入的Redis节点作为从节点进行数据复制。数据同步后,修改

sharding配置,让指向原实例的Shard指向新机器上扩容后的Redis节点,同时调整新Redis节点为主节点,原实例可不再使用。

presharding

是预先分配好足够的分片,扩容时只是将属于某一分片的原Redis实例替换成新的容量更大的Redis实例。参与sharding的分片没有改变,所以也

就不存在key值从一个区转移到另一个分片区的现象,只是将属于同分片区的键值从原Redis实例同步到新Redis实例。

并不是只有增

删Redis节点引起键值丢失问题,更大的障碍来自Redis节点突然宕机。在《Redis持久化》一文中已提到,为不影响Redis性能,尽量不开启

AOF和RDB文件保存功能,可架构Redis主备模式,主Redis宕机,数据不会丢失,备Redis留有备份。

这样,我们的架构模式变

成一个Redis节点切片包含一个主Redis和一个备Redis。在主Redis宕机时,备Redis接管过来,上升为主Redis,继续提供服务。主

备共同组成一个Redis节点,通过自动故障转移,保证了节点的高可用性。则Sharding架构演变成:

Redis Sentinel提供了主备模式下Redis监控、故障转移功能达到系统的高可用性。

高访问量下,即使采用Sharding分片,一个单独节点还是承担了很大的访问压力,这时我们还需要进一步分解。通常情况下,应用访问Redis读操作量和写操作量差异很大,读常常是写的数倍,这时我们可以将读写分离,而且读提供更多的实例数。

可以利用主从模式实现读写分离,主负责写,从负责只读,同时一主挂多个从。在Sentinel监控下,还可以保障节点故障的自动监测。

3.利用代理中间件实现大规模Redis集群

上面分别介绍了多Redis服务器集群的两种方式,它们是基于客户端sharding的Redis Sharding和基于服务端sharding的Redis Cluster。

客户端sharding技术其优势在于服务端的Redis实例彼此独立,相互无关联,每个Redis实例像单服务器一样运行,非常容易线性扩展,系统的灵活性很强。其不足之处在于:

由于sharding处理放到客户端,规模进步扩大时给运维带来挑战。

服务端Redis实例群拓扑结构有变化时,每个客户端都需要更新调整。

连接不能共享,当应用规模增大时,资源浪费制约优化。

服务端sharding的Redis Cluster其优势在于服务端Redis集群拓扑结构变化时,客户端不需要感知,客户端像使用单Redis服务器一样使用Redis集群,运维管理也比较方便。

不过Redis Cluster正式版推出时间不长,系统稳定性、性能等都需要时间检验,尤其在大规模使用场合。

能不能结合二者优势?即能使服务端各实例彼此独立,支持线性可伸缩,同时sharding又能集中处理,方便统一管理?本篇介绍的Redis代理中间件twemproxy就是这样一种利用中间件做sharding的技术。

twemproxy处于客户端和服务器的中间,将客户端发来的请求,进行一定的处理后(如sharding),再转发给后端真正的Redis服务器。也就是说,客户端不直接访问Redis服务器,而是通过twemproxy代理中间件间接访问。

参照Redis Sharding架构,增加代理中间件的Redis集群架构如下:

twemproxy中间件的内部处理是无状态的,它本身可以很轻松地集群,这样可避免单点压力或故障。

twemproxy又叫nutcracker,起源于twitter系统中redis/memcached集群开发实践,运行效果良好,后代码奉献给开源社区。其轻量高效,采用C语言开发,工程网址是:GitHub - twitter/twemproxy: A fast, light-weight proxy for memcached and redis

twemproxy后端不仅支持redis,同时也支持memcached,这是twitter系统具体环境造成的。

由于使用了中间件,twemproxy可以通过共享与后端系统的连接,降低客户端直接连接后端服务器的连接数量。同时,它也提供sharding功能,支持后端服务器集群水平扩展。统一运维管理也带来了方便。

当然,也是由于使用了中间件代理,相比客户端直连服务器方式,性能上会有所损耗,实测结果大约降低了20%左右。

多个同构twemproxy(配置相同)同时工作,

接受客户端的请求,根据hash算法,转发给对应的redis。

优点:

- 开发简单,对应用几乎透明

- 历史悠久,方案成熟

缺点:

- 代理影响性能

- lvs和twemproxy会有节点性能瓶颈

- redis扩容非常麻烦

- twitter内部已放弃使用该方案,新使用的架构未开源

Codis:

ZooKeeper:

存放路由表和代理节点元数据

分发Codis-Config的命令

Codis-Config :

集成管理工具,有web界面

Codis-Proxy :

无状态代理,兼容Redis协议

对业务透明

Codis-Redis:

基于2.8版本,二次开发

加入slot支持和迁移命令

优点:

- 开发简单,对应用几乎透明

- 性能比Twemproxy好

- 有图形化界面,扩容容易,运维方便

缺点:

- 代理依旧影响性能

- 组件过多,需要很多机器资源

- 修改了redis代码,导致和官方无法同步,新特性跟进缓慢

- 开发团队准备主推基于redis改造的reborndb

Redis Cluster:

P2P模式,无中心化

把key分成16384个slot

每个实例负责一部分slot

客户端请求若不在连接的实例,该实例会转发给对应的实例。

通过Gossip协议同步节点信息

优点:

- 组件all-in-box,部署简单,节约机器资源

- 性能比proxy模式好

- 自动故障转移、Slot迁移中数据可用

- 官方原生集群方案,更新与支持有保障

缺点:

- 架构比较新,最佳实践较少

- 多键操作支持有限(驱动可以曲线救国)

- 为了性能提升,客户端需要缓存路由表信息

- 节点发现、reshard操作不够自动化


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/797772.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-27
下一篇2023-08-27

发表评论

登录后才能评论

评论列表(0条)

    保存