sem的模型介绍

sem的模型介绍,第1张

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。

分类关键词大致分为三类:

1、按地域分类

之所以要按地域分类,肯定是因为企业主需要重点投放特定地域。通常来说招商加盟会按此方法分类比较多,就是因为单独分地域投放,一来可以监测每个地域的投放效果,二来有效调整各个地域的关键词出价,适当节省投放预算,但账户结构搭建思路,还是要回归到词性上面来。

2、按人群分类

为什么说冷门行业按人群分类多?是因为冷门行业针对性搜索词少,如果只投行业词基本不能带量,所以可以进行人群分析,找到用户行为特征针对性投放相关产品或需求词,也可以在SEM推广带量,但是相对上面两种方式来说成本会偏高。

3、按词性分类

所谓的词性分类,无非是品牌词,通用词,疑问词,口碑词,人群词,价格词等等,单独把不同词性分组,是为了在撰写创意时能够具备通顺度,提升账户点击率,并且为不同的用户需求制定不同的落地页,也可以间接提升账户转化率。这其中每个账户也可以把这些词性合并或者再分组,根据自己的喜好程度和产品来分即可。

(1)功能很强大

(1)模型回归系数汇总表格

(1)路径影响关系MI-调整影响关系

相关链接:

链接1 :结构方程模型(Structural Equation Model, SEM) https://zhuanlan.zhihu.com/p/138837728

链接2 :SPSSAU教程-结构方程模型 SEMhttps://spssau.com/helps/questionnaire/semAnalyse.html

链接3 :在线spss】数据分析实战教学之结构方程模型-SPSSAU实现 https://www.bilibili.com/video/av69372102


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/83263.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-05
下一篇2023-03-05

发表评论

登录后才能评论

评论列表(0条)

    保存