你能说出红墨水为什么会这样流动吗试一试把你的解释写在这里

你能说出红墨水为什么会这样流动吗试一试把你的解释写在这里,第1张

热水有向上运动,冷却后从周围向下运动的自然循环方式。在冷水中的墨水仅仅依靠布朗运动来扩散,所以红墨水跟着这股水流的运动,和冷水中不一样功能不良真的是很多PCBA电子公司的痛,尤其现在的CPU几乎全都采用BGA封装,当有开机不良品从客户端退回,需要分析不良原因时,最常采用的就是红墨水测试(Red Dye Test)法了,因为红墨水测试的好处是可以让人一目了然,了解整颗BGA在哪些位置有锡球发生了裂缝(crack)问题,方便制程及研发单位快速了解可能原因与可能的应力(Stress)来源。

不过,这红墨水测试其实是一种破坏性测试,建议一定要等到所有非破坏性的可行方案都试过了,最后才做这个红墨水破坏性测试。做过红墨水测试的样品,理论上还是可以再拿去做切片(Cross-Section)做进一步的SEM(Scanning Electron Microscope)显微照相及EDX(Energy-Dispersive X-ray spectroscopy)金属元素分析,但样品毕竟已在红墨水测试时曾经过外力破坏,而且部分区域可能被红墨水或其他物质污染,也就是已非第一现场,所以后续的分析结果就会被持以保留态度。

另外,红墨水测试无法判断PCB内层是否有问题,有些不良原因可能是PCB的导通孔(via)断裂,或是内层微短路(CAF, Conductive Anodic Filament)所造成,一旦做了红墨水测试,这些现象就可能会消失或被破坏。

所以,一般比较谨慎的作法是先用电性测试的手法,尽可能找到是那几颗锡球与线路可能出现了问题,然后抽丝剥茧,一步步的排查缩小可能范围,最好还要分得出来是开路还是短路,最后直接做切片,直捣黄龙,一掷中的。

不过本人还是以红墨水试验为淮来做说明,下面是一般实验室(lab)做红墨水试验后所出的报告格式,有些实验室可能会有少许的不同,但表示方法都大同小异。

BGA红墨水锡球断裂面Type表示:

配合最上面的BGA锡球断裂面的图示,下面用颜色来代表锡球(ball)的断裂面。

Type 0 锡球无裂缝

Type 1 裂缝发生在锡球与零件焊垫底层之间。 零件焊垫与本体剥离。焊锡性良好。

Type 2 裂缝发生在锡球与零件焊垫表层之间。 零件焊垫完整,断裂在零件端焊锡面。

Type 3 裂缝发生在锡球与PCB焊垫表层之间。 PCB焊垫完整,断裂在PCB端焊锡面。

Type 4 裂缝发生在锡球与PCB焊垫底层之间。 焊垫与PCB本体剥离。焊锡性如果是Type 1 或 4 缝隙发生在焊垫底层,一般认为是应力(Stress)所造成的机率最大,而应力可能来自PCB板弯,组装制程中应力(比如说锁螺丝、针床测试),使用者弯曲产品,或使用者不小心摔落桌面或地面锁造成。虽然已经可以证明焊锡(Solderability)没有问题,但也不排除零件或PCB经过多次回焊高温洗礼后造成焊垫的Bonding-Force降低的影响,一般来说焊垫都可以在三次以内正常焊锡而不会脱落,如果PCB或BGA零件经过多次重工或不当高温,也有很大可能造成焊垫脱落的现象。

如果是Type 2 或 3 缝隙发生在焊垫表层,一般认为也是应力(Stress)所造成的机率最大,其次也有可能是「NWO(Non-Wet-Open)」焊锡问题所造成,正常情况下由有经验的工程师在显微镜下观察就可以判断是否与焊锡有关,断裂面如果层光滑亮面则可能为焊锡问题,如果判断不出来就必须再进一步做切片(Cross-Section),检查IMC(Intermetallic Component)的生成状况以做判断,如果是ENIG的版子,可能还得打EDX看是否有「黑垫(Black pad)」现象,不过如果是黑垫也不应该只有BGA有问题,其他零件多多少少也会出现问题才对?仅供参考

一般来说,集成电路在研制、生产和使用过程中失效不可避免,随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,通过芯片失效分析,可以帮助集成电路设计人员找到设计上的缺陷、工艺参数的不匹配或设计与操作中的不当等问题。

失效分析的意义主要表现

具体来说,失效分析的意义主要表现在以下几个方面:

失效分析是确定芯片失效机理的必要手段。

失效分析为有效的故障诊断提供了必要的信息。

失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。

失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。

失效分析主要步骤和内容

芯片开封:去除IC封胶,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备。

SEM 扫描电镜/EDX成分分析:包括材料结构分析/缺陷观察、元素组成常规微区分析、精确测量元器件尺寸等等。

探针测试:以微探针快捷方便地获取IC内部电信号。镭射切割:以微激光束切断线路或芯片上层特定区域。

EMMI侦测:EMMI微光显微镜是一种效率极高的失效分错析工具,提供高灵敏度非破坏性的故障定位方式,可侦测和定位非常微弱的发光(可见光及近红外光),由此捕捉各种元件缺陷或异常所产生的漏电流可见光。

OBIRCH应用(镭射光束诱发阻抗值变化测试):OBIRCH常用于芯片内部高阻抗及低阻抗分析,线路漏电路径分析。利用OBIRCH方法,可以有效地对电路中缺陷定位,如线条中的空洞、通孔下的空洞。通孔底部高阻区等,也能有效的检测短路或漏电,是发光显微技术的有力补充。

LG液晶热点侦测:利用液晶感测到IC漏电处分子排列重组,在显微镜下呈现出不同于其它区域的斑状影像,找寻在实际分析中困扰设计人员的漏电区域(超过10mA之故障点)。

定点/非定点芯片研磨:移除植于液晶驱动芯片 Pad上的金凸块, 保持Pad完好无损,以利后续分析或rebonding。

X-Ray 无损侦测:检测IC封装中的各种缺陷如层剥离、爆裂、空洞以及打线的完整性,PCB制程中可能存在的缺陷如对齐不良或桥接,开路、短路或不正常连接的缺陷,封装中的锡球完整性。

SAM (SAT)超声波探伤可对IC封装内部结构进行非破坏性检测, 有效检出因水气或热能所造成的各种破坏如:o晶元面脱层,o锡球、晶元或填胶中的裂缝,o封装材料内部的气孔,o各种孔洞如晶元接合面、锡球、填胶等处的孔洞。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/83447.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-05
下一篇2023-03-05

发表评论

登录后才能评论

评论列表(0条)

    保存