SD与SEM有区别吗

SD与SEM有区别吗,第1张

SD是标准偏差,反映的是样本变量值的离散程度。SEM是标准误差,反映的是样本均数之间的变异。

SD为样本标准差 ,根据标准差SD能反映变量值的离散程度 。正负值就是在计算好的SD上加个正负号, 表示在这个范围内波动;在平均值上加上或者减去这个数字,都认为在正常范围内 。

标准差的统计学常用符号为s,医学期刊常用SD表示。标准差是一个极为重要的离散度指标,常用于表示变量分布的离散程度 。对于一组变量,只用平均数来描写其集中趋势是不全面的,还需要用标准差来描写其离散趋势。标准差用公式表示为:s= ∑(x-ˉx) 2 n-1由上式可见,标准差的基本内容是离均差,即(x-ˉx)。它说明一组变量值(x)与其算术均数(ˉx)的距离,故能描述变异大小。s小表示个体间变异小,即变量值分布较集中、整齐s大表示个体间变异大,即各变量值分布较分散。

SEM是样品标准差,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。

拓展资料

生物统计学是生物数学中最早形成的一大分支,它是在用统计学的原理和方法研究生物学的客观现象及问题的过程中形成的,生物学中的问题又促使生物统计学中大部分基本方法进一步发展。生物统计学是应用统计学的分支,它将统计方法应用到医学及生物学领域,在此,数理统计学和应用统计学有些重叠。

参考资料百度百科—生物统计学

可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料性质选择适当的变量变换方法。

1、对数变换 即将原始数据X的对数值作为新的分布数据:

X’=lgX

当原始数据中有小值及零时,亦可取X’=lg(X+1)

还可根据需要选用X’=lg(X+k)或X’=lg(k-X)

对数变换常用于(1)使服从对数正态分布的数据正态化。如环境中某些污染物的分布,人体中某些微量元素的分布等,可用对数正态分布改善其正态性。

(2)使数据达到方差齐性,特别是各样本的标准差与均数成比例或变异系数CV接近于一个常数时。

2、平方根变换 即将原始数据X的平方根作为新的分布数据。

X’=sqrt(X)

平方根变换常用于:

1)使服从Poission分布的计数资料或轻度偏态资料正态化,可用平方根变换使其正态化。2)当各样本的方差与均数呈正相关时,可使资料达到方差齐性。

3)倒数变换 即将原始数据X的倒数作为新的分析数据。

X’=1/X

常用于资料两端波动较大的资料,可使极端值的影响减小。

4、平方根反正旋变换 即将原始数据X的平方根反正玄值做为新的分析数据。

X’=sin-1sqrt(X)

常用于服从二项分布的率或百分比的资料。一般认为等总体率较小如<30%时或较大(如>70%时),偏离正态较为明显,通过样本率的平方根反正玄变换,可使资料接近正态分布,达到方差齐性的要求。

其实应该说是最大似然法和最小二乘法的区别吧。

采用OLS的回归分析方法存在几方面的限制:

(1)不允许有多个因变量或输出变量

(2)中间变量不能包含在与预测因子一样的单一模型中

(3)预测因子假设为没有测量误差

(4)预测因子间的多重共线性会妨碍结果解释

(5)结构方程模型不受这些方面的限制

SEM的优点:

(1)SEM程序同时提供总体模型检验和独立参数估计检验;

(2)回归系数,均值和方差同时被比较,即使多个组间交叉;

(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;

(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。

构方程模型最为显著的两个特点是:

(1)评价多维的和相互关联的关系;

(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。

1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。

其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。

2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/84634.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-05
下一篇2023-03-05

发表评论

登录后才能评论

评论列表(0条)

    保存