航空发动机被称为研发制造难度最大的现代工业造物,这么难造吗?

航空发动机被称为研发制造难度最大的现代工业造物,这么难造吗?,第1张

航空发动机(尤其是军用)要在非常有限的体积内追求极致的性能,需要更尖端的材料和更精细的设计,材料能满足几百至几千小时的稳定工作就可以了。三转子(三轴)发动机的是英国罗尔斯·罗伊斯,比如罗罗以前的RB211系列和目前的瑞达系列。

法国没有能力搞先进航空发动机,目前有能力搞先进航空发动机的只有两个国家三个公司,即英国的罗罗,美国的GE和普惠,效率,推力和涵道比,增压比,涡轮前温度都有匹配关系。涡轮前温度越高,匹配的总增压比会提高,民用大涵道比发动机涵道比尽量增大,匹配的风扇亚比会降低,军用小涵道比是尽量提高涡轮前温度,它的要求和民用不同。感觉已经到了现有常用材料的瓶颈了,镍基合金承载温度从700升到1000℃提升的比较快,到1100℃再往上就很难了。1400℃是镍基合金的熔点范围,现在已经0.8Tm了,更高的温度只能指望陶瓷叶片或复合材料叶片了。

现在的航空发动机有离心式和轴流式

地面燃气轮机希望实现高效率、低成本、耐久性和长时可靠性(温度相对低一点,要求材料在更长时间的(10万小时级)稳定运行),对体积要求相对低一点。地面燃气轮机工况相对稳定(比如电站),材料能使用更长的时间;而航发工况更复杂(起飞、爬升、巡航、剧烈机动)导致材料失效更快。这两个领域要做好的话,都需要几十年的持续投入和积累。如果德国和日本要搞先进航发的话,不少东西也是得从头开始。战后德国的人才流失严重,国防工业也被压制。此外也存在需求不足的因素。毕竟欧洲要直面苏联的压力,MD在欧洲防务是很上心的,欧洲人只要想要,总能从美国人那里搞到配备先进航发的战斗机。德国虽然在燃机领域颇有建树,但是航发和燃机的差异还是很大的,没有足够的驱动力,几大巨头们也不愿走这条无止境烧钱的路。

MTU利用自己在燃机领域积累的雄厚实力,参加了不少航发的国际合作,大多负责压气机和低压涡轮部分;核心机一般都是交给美英的合作中完成,这也算是术业有专攻吧。台风配备的EJ200好像也是RR负责核心机,德国人搞压气机。空客的航发都是固定的几家采购,RR(trent系列)、GE和PW(GP系列)或者一些合作成立的公司(像IAE的V2500),德国可能还是以参与为主。自然科学,和工业是可以积累一步一步往前走,所谓后人站在巨人肩膀上。接下来二流的人才从事商业贸易,三流的进了IT行业。那搞技术的,认清形势以后还能坚持的就只有四流的了。最后的最后,把科研落实到生产的现场工人,他们是被很多人看不起的,航发却要通过他们的双手生产,组装,调试。

这长图片更直观

我个人认为航发追求的是极端恶劣条件下(高温高压高应力)保证长期的、稳定的、极端的性能。这个高温就难倒了很多领域:半导体工业有很多技术难点,但是常温或100~200℃左右的问题起码可以通过各种常见设备(SEM,TEM,FIB,3DAP等等)进行研究,实验方法也是成熟的,即使是原位研究是可能的。而在航发中,如高速(甚至是超音速)气流中的燃烧问题、材料在极高温度下(1000℃)的蠕变以及相变过程的原位研究等就是用现有手段难以实现的。

对物理过程的认识和工程方面的实践都存在巨大困难的前提下,还要不断推进技术前沿,我认为是能称得上最难。准确来说是风扇带动的外涵气流产生了超过整机80%以上的推力,单个叶片上的气动载荷超过2吨,而工作时的离心载荷更是达到13吨以上,而GE90-115B的复合材料+钛合金包边叶片更是作为工艺品在博物馆展出(具体哪个博物馆想不起名字了),而作为GE90的后辈GEnx将风扇叶片减少至19片,其单片叶片所承受的气动载荷更大(具体数值没有查过)。

马赫数较低的阶段,涡扇发动机效率高

涡轮其实是个能量转换的部件,就像水轮机的涡沦把水流的势能转换为发电机转子的动能再来发电。航发涡轮是把燃油燃烧产生的热能转化为涡轮旋转的动能,继而带动风扇和压气机产生推力。涡轮温度越低,燃油的热能散失的越多,转化效率越低,所以这是没办法的事情。合金叶片对高温的承载能力有限,可不可以换种思路,将材料的研究着力于耐高温涂料上,高温涂料经过特殊的工艺处理能达到很好的效果,可以减少对金属材料的依赖,转而在涂料材料上去的巨大突破。目前来看,未来可能的替代材料是陶瓷基复合材料(CMC),它的温度能比金属高很多,甚至不需要涂层,但是还有很多问题需要解决。据说GE搞过实验,结果我还不了解。这应该还是很有希望的一条路。

发动机材料不是任何东西都离不开铁,而是铁作为杂质不太好完全消除,而且现在国内的镍基高温合金国军标铁含量也已经可以降低到0.05%,实际产品铁含量更低。而且也不是所有的镍基高温合金都不含铁,比如发动机中用量最大的IN718合金,是含有18%的铁,因为铁便宜。还有,发动机材料选用镍基而不是铁基最主要的原因并不是铁的蠕变温度问题,而是因为铁会发生同素异构转变,镍则不会。此外,钴基材料是更好的高温结构材料,但钴价格太昂贵,所以综合来说镍基材料是最优的。航空发动机为了进气顺畅,是没有致密滤网这种东西的,最多在入口安装惯性或者离心分离器。只有地面装备的燃气轮机如M1 Abrams装备的AGT1500燃气轮机,出于使用环境需要,才会加装滤网,不过M1每次大修发动机时,会发现许多压气机叶片都被没过滤干净的沙粒打出凹坑或者边缘受损。

早期的风扇是窄弦风扇,由实心钛合金锻造而成

俄罗斯(前苏联)很擅长利用系统工程理论,将一个个不够先进的零部件整个成为整体性能突出的产品,最典型的莫过于前苏联米格25歼击机。和欧美同类军工产品相比,俄罗斯的相关产品具有易于维护,粗犷的特点。不能说精良的、精密的就一定是好的,各有各的优点。二战时期的苏德战场将两种风格的优缺点暴露无遗:德式坦克(虎式、豹式等)做工十分精良,制造工艺在当时相当先进,但对维护的要求很高,产量低,在恶劣的苏联冬季气候中无法有效发挥自身的效力;反观苏式坦克(如T-34),结构简单,可利于大规模制造,操作更简单,斯大林格勒拖拉机厂的工人在生产出一台T-34后自己就驾驶着上战场了。随着战事的不断进行,德军装备战损严重,不能得到及时补充,而苏军的装备源源不断涌向战场,最后德军被活活拖垮。 

所以,极端追求设备的先进性成为很多人的误区,如何是现有设备发挥最大效力可能是需要重点解决的问题。飞天巡洋,动力先行,航发技术关乎国家军事力量,是各国最精尖端技术的集合,其面临的问题之广之繁之困难,试验成本之高是难以想象的,比如涡喷发动机燃烧室温度越高性能越好,但哪种材料怎样处理可以在如此高温下的使用就成为了绝对屏障,因为不可能去穷举试验。航发看似粗旷实则精密之极。

航发和燃气轮机的做功过程是布雷顿循环

开发新材料的脚步从未停下,只是在这种环境下满足要求的材料确实比较难开发。现在也有脉冲爆震和超燃冲压发动机的研究,但是在跨音速段,涡扇确实是非常有优势。希望以后能有反重力引擎吧。内流空气系统对维持发动机瞬态工作条件的稳定十分重要,如果稍有闪失就可能导致部件局部过热或者零件间隙偏差过大进而影响性能甚至导致安全事故。钛合金一般用在风扇和压气机叶片,工作温度比较低,正常情况下不会发生钛火。我以前看过一篇关于钛火的论文,主要原因一方面是外物撞击等造成的剧烈摩擦、冲击导致压气机钛合金叶片发生钛火;另一方面就是喘振等导致高温气体从燃烧室反向冲到压气机,导致叶片发生钛火。

为了提高航空发动机性能,RR搞的三转子发动机,pw搞的是齿轮传动,目的都是解藕中压涡轮或低压涡轮与风扇或中压压气机的转速(传统设计,他们是在一根轴上)。大函道比发动机风扇要求叶尖尽量不超音,而风扇直径很大,所以风扇转速不能太高,否则效率恶化。低压涡轮增好相反,转速越高效率越高。一个绳子栓了两蚂蚱,只能互相妥协。我比较关心航发的轴承使用和维护,以现在高氮合金钢轴承(内外圈)氮化硅(陶瓷球滚动体)还是无法满足航发的实际工况温度要求。

那就需要润滑系统的补充,首先是满足高速、高温、高负载(高扭矩)能形成良好油膜,其次需要润滑油交换带走热量,并冷却后输回(油路循环系统)。轴流式更适合多级排列,提高压气比,但是相应的就出现了空气倒流的可能,所以引入了可调静止叶片的概念,和放气活门的概念防止喘震,另外n1 n2转子的速度匹配也要精确控制,因为n1可以认为空转,而n2却要带动其他附件转动,所以转子间的速度匹配也十分困难,就更不用说Rb211及其后来的三转子系列了,所以能搞三转子技术的公司很少。

压气机采用转子+静子的结构

但为什么一定要搞三转子呢?因为三转子相对于2转子压气机的压缩过程更平滑,更加不容易喘震、也就是说可以提高压气比,从而提高涡轮钱燃气总压,提高推力,换句话说,如果难度不大,转子越多可能从某一角度说,发动机将会越好。

航空发动机经历了活塞,涡喷,涡扇三代了,涡扇的潜力也基本到头了,新一代超燃冲压以及爆轰发动机我们和西方站在同一起跑线上,虽然我们基础方面还是会差一点,但是靠着集中力量办大事的优势,下一代发动机上和美英比肩还是很有可能的。

(一)实验室简介

国土资源部成矿作用与资源评价重点实验室成立于2007年,隶属于中国地质科学院矿产资源研究所,定位于应用基础研究。实验室现有固定人员67人,下设10多个专业实验室,拥有开展成岩成矿物质成分(同位素、元素)、结构、年代学和成矿物理化学条件研究的一系列先进的地球化学分析测试仪器,以及开展地球物理、遥感信息处理和可视性矿产资源评价的众多的先进设备。承担了国家“973”计划、国家科技支撑计划、国际合作项目、自然科学基金项目以及省部级项目(包括地质调查项目)等众多科研项目的工作。

国土资源部成矿作用与资源评价重点实验室以矿产资源形成过程、分布规律和勘查评价技术为研究方向。其特色在于将成矿背景、成矿过程、成矿规律、矿床模型和勘查评价技术作为一个整体来进行研究。其优势在于实验室依托于中国地质科学院矿产资源研究所和中国地质调查局,能够将成矿及找矿理论研究与勘查评价有机地结合在一起,从而使研究成果能迅速地在实践应用中得到检验和提高。

(二)2013年度重要科研成果

1.世界大型超大型矿床成矿图编制及全球成矿规律研究与评价

“1∶2500万世界大型超大型矿床成矿图编制及全球成矿规律研究与评价”是中国地质调查局地质调查项目,也是世界地质图委员会在新世纪批准设立的首个矿产资源编图国际合作项目。通过8年多的工作,取得以下主要成果:

(1)提出客观实用的大型超大型矿床划分全球标准,从全球1285个主要矿床中筛选出445个大型超大型矿床,建立具有国际权威的世界大型超大型矿床数据库。

(2)以世界地质图委员会为国际合作平台,首次编制完成数字化的1:2500万世界大型超大型矿床成矿图,填补了国内外空白。

(3)根据大陆裂解增生、大洋开启闭合、洋陆相互作用及其地质演化特征,结合全球地质构造背景与成矿特征,首次在全球大陆范围划分出4大成矿域和21个巨型成矿区带,提出全球成矿统一性、不同区域成矿特殊性、大型超大型矿床成矿偏在性和异常成矿作用等新认识,深化全球成矿规律研究。

(4)在编图研究基础上,对世界主要类型矿产资源和各大洲矿产资源进行了战略评价,研究探讨了中国矿产资源战略问题。

该项成果为我国编制找矿突破战略行动总体实施方案、组织实施境外矿产资源勘查开发、部署地质调查国际合作、从全球视野破解我国矿产资源难题,提供了重要战略参考和科学指导。世界地质图委员会即将在全球范围正式发布《1:2500万世界大型超大型矿床成矿图》(英文版),使本项成果的应用范围扩展到全球地质界,在发展全球成矿学、寻找大型超大型矿床等方面具有世界指导意义。

此项成果2013年获国土资源科学技术二等奖。

2.我国主要金属矿床模型研究 

根据国际矿床模型研究现状和发展趋势,结合我国金属矿床的基本特点,通过对我国20年来矿床研究和勘查成果的进一步总结和提高,建立或提升了我国主要矿床模型。首次按照国际标准,以矿床类型为主线,结合产出地质环境,开展了与酸性花岗岩有关的钨、锡和稀有多金属矿床,与中酸性花岗质岩石有关的斑岩-矽卡岩型铜、铁和钼矿床,与镁铁-超镁铁质岩有关的岩浆型铜镍硫化物矿床,与海底喷流有关的块状硫化物型铜铅锌矿床,密西西比河谷型铅锌矿床和主要金矿床等典型矿床模型和矿集区尺度模型研究,为在一定地质背景下开展特定的矿产及其组合找矿勘查提供了科学依据。完成了26组矿产111个矿床模型的编写,编辑完成了《中国矿床模型概论》。根据我国矿产资源评价和找矿勘查工作的需要,比较全面系统地编著了《国外主要矿床类型、特点及找矿勘查》,介绍了当今国际上主要类型矿床的特点、成矿机制、分布规律、形成背景以及矿床尺度、矿集区尺度和区域尺度的矿床模型,包括造山型金矿床、卡林型金矿床、浅成低温热液型金矿床、斑岩型±矽卡岩型铜钼矿床、密西西比河谷型铅锌矿床、沉积喷流型铅锌矿床、火山块状硫化物型铅锌铜多金属矿床、岩浆铜镍硫化物型矿床、铁氧化物铜金矿床、黑色岩系型矿床、砂岩型铀矿床、红土型镍矿床和红土型铝土矿床等13类矿床模型。根据我国东部中生代大规模成矿作用的期次和特点,选择主要成矿带(区)及代表性矿田或矿床,融汇了前人工作和本次研究的提升内容,系统提出了矿床、矿集区和区域尺度的矿床模型,编制了《中国东部中生代金属矿床图册》,探讨各类矿床的形成过程,最后总结提出中国东部中生代成矿环境,构筑出主要不同类型矿床组合的矿床模型,以期为我国进一步开展找矿勘查提供支撑。

该项成果于2013年获得国土资源科学技术奖二等奖。

3.全国矿产资源潜力评价取得一系列丰硕成果 

“全国矿产资源潜力评价”项目经全国有关各单位科技人员奋力拼搏,历时8年,全面完成各项任务,取得了一系列丰硕成果,为制定国家资源战略、实施找矿突破战略行动全国地质矿产保障工程和“十二五”矿产勘查部署提供了重要依据。

全国重要矿产和区域成矿规律研究工作项目取得的主要成果有:①首次实现1、2、3、4级成矿区带的全覆盖,提出23个矿种矿产预测类型划分方案,厘定出388个矿产预测类型;②首次划分了单矿种的成矿区带,编制了系列图件,建立了矿产地一览表及数据库。完善了各成矿省的区域成矿模式及区域成矿谱系;培养了一批青年骨干及19位博士、博士后等,出版专著8部,发表论文168篇。

工作成果在一些重要矿床,如广西大厂锡多金属矿床、江西淘锡坑钨矿、盘古山钨矿、贵州大竹园铝土矿等矿床的勘查评价中起到了有效的指导作用,取得良好的找矿效果;在区域成矿规律研究方面提出了“五层楼+地下室”新成矿模式。

4.全国重要矿产总量预测项目建立矿床模型综合地质信息矿产预测方法体系 

全国重要矿产总量预测项目在借鉴国内外矿产预测经验基础上,创新性地提出了矿床模型综合地质信息矿产预测方法体系,在此基础上圈定了各类不同级别预测靶区、成矿远景区近5万处,优选了省级成矿远景区和全国成矿远景区。预测评价了每个靶区、成矿远景区的潜在资源量。编制了单矿种资源潜力分布图、远景区分布图和勘查部署图等。全国重要矿产总量预测工作是一项任务庞大、覆盖全域的复杂系统工程,与以往和国外矿产预测比较,此次预测评价在地质资料水平、矿产预测方法、预测广度等方面处于国家领先水平。此项预测成果将对我国资源预测评价和矿产规划产生深远影响。

5.深部探测技术与实验研究专项取得重要进展 

历时5年努力,深部探测技术与实验研究专项的深部矿产资源立体探测技术及实验研究项目取得了丰硕的成果。长江中下游成矿带岩石圈结构、深部成岩成矿过程、矿集区3D结构探测取得一批重大发现,深化了对巨型成矿带和矿集区形成的认识:

(1)发现了长江中下游成矿带发生岩石圈拆沉和幔源岩浆底侵的地震学证据,证实存在多级岩浆活动,诠释了巨型成矿带成岩、成矿的动力学成因。

(2)揭示了成矿带地壳精细结构和变形历史。发现上地壳由多重滑脱层上的逆冲-褶皱构造系统组成;后期的伸展盆地多数是在逆冲断层的基础上再活化形成。

(3)明确了郯庐断裂、长江构造带等重要构造带的性质。发现郯庐断裂为逆冲-推覆构造,张八岭隆起为一推覆体;“长江深断裂”为陆内造山阶段形成的多重逆冲构造,伸展阶段演化为伸展坳陷;“庐江-繁昌-湖州”断裂为伸展拆离构造带,向西可能与信阳-霍山断裂相接。

(4)获得铜陵、庐枞矿集区3D结构,揭示出重要岩体和控矿地质体的空间分布,深化了对成矿的认识,为深部找矿提供了重要信息。

6.钾盐成矿理论和预测评价取得重要进展 

(1)裂谷成钾模式。从古生代—中生代晚期—新生代,钾盐成矿的大地构造环境从克拉通稳定巨型陆表海,转变为裂谷盆地。裂谷构造沉降形成封闭性良好的盆地,同时伴有大量火山活动,以温泉等形式带来丰富的深源成矿物质,一些裂谷还与大洋沟通,接受海水的补给;上述构造、物质条件与干旱气候的耦合,导致钾盐沉积成矿。总结研究提出裂谷成钾“两阶段三过程”模式。第一阶段,地表盐湖-太阳能作用;第二阶段,埋藏-岩浆热能作用;“三个成钾作用过程”:第一是蒸发沉积,第二是沉积淋滤,第三是变质-改造(图35,图36)(地球学报,2013,34(5),全文已被下载82644次)。

图35 裂谷盆地成钾模式图

(2)塔里木水化学与罗布泊成钾物源研究。课题组共采集和收集资料获得537件水样数据,统计分析发现,塔里木盆地河水SO4/Cl背景值为2.75,分别高出柴达木盆地河水(0.88)和海水(0.18)两倍多和18倍多;而塔里木盆地河水K/Cl背景值为0.06,高出海水(0.02)两倍多。由此说明,塔里木盆地地质背景本身具有富K和SO4、贫Cl的特征,这可能就是造成罗布泊盐湖巨量钙芒硝沉积、钾盐富集和盐湖氯相对亏损的地球化学背景(Boying et al.,2013)。研究还发现,除了蒸发作用和周围山区岩石风化影响外,塔里木盆地氯化物型盐泉水广泛分布,表明了来自地球深部的CaCl2型水参与了盆地水体演化及补给罗布泊盐湖。罗布泊是塔里木盆地水体的最终归宿。塔里木盆地地质背景即老地层富钾,构成了罗布泊盐湖成钾的矿源区,不仅对解释罗布泊富钾机理和中国陆块成钾理论研究具有重要启示,也对在罗布泊深部和外围开展找钾奠定了科学依据。

图36 裂谷盆地钾盐沉积及富钾卤水形成过程示意图

(3)钾盐找矿与资源预测。江陵凹陷钾盐勘查:在裂谷成钾模式指导下,通过实施油钾兼探,开展多学科综合研究,基本掌握了江陵凹陷深层富钾卤水的分布规律,建立钾盐资源模型,评价获得富钾卤水氯化钾资源预测量为8.2亿吨,确定了下一步勘查的主攻方向和优选靶区。

罗布泊钾盐预测:建立了盐湖钾盐聚集模型,推算获得罗布泊地层水体中可能蕴藏有11.19亿吨KCl资源量。目前,勘查发现卤水KCl的资源/储量为3.21亿吨,剩余7.89亿吨,故此,推断罗布泊尚具有很大的找钾空间。

兰坪-思茅盆地成矿预测:建立成矿地质体体积法资源量预测方法,计算预测区兰坪-思茅盆地预测区钾盐资源量达1.98亿吨;综合评价,预测结果可信度为0.65,高于传统地质体体积法(范建福,肖克炎等,2013)。至今,仅在勐野井发现2000万吨钾盐资源量,可见,兰坪-思茅盆地钾盐找矿尚有较大的潜力。

(4)青海柴达木盆地盐湖低品位钾盐开发利用研究。开发了一种用于盐矿开采的多级驱动溶矿方法,并获国家发明专利(专利号:ZL2009 1 0235552.X)。在青海别勒滩地区试验结果表明,利用该项技术可以整体提高溶剂水位,增大溶矿面积,增加可溶矿开采的有益矿产资源总量,增大溶矿效率,切断单级驱动产生的优势通道,有效降低了溶剂的直排浪费。该项技术如果成功运用到整个察尔汗地区,对于缓解我国钾盐资源短缺现状意义重大。

(5)罗布泊盐湖120万吨/年硫酸钾成套技术开发。该项研究成果获2013年度国家科技进步奖一等奖(主要完成单位:国投新疆罗布泊钾盐有限责任公司、化工部长沙设计研究院、中蓝连海设计研究院、中国地质科学院矿产资源研究所、清华大学。主要完成人:李浩、唐中凡、尹新斌、雷光元、刘小力、汤建良、李守江、黎礼、李红星、谭晶晶、郭兴寿、颜辉、湛留意、刘成林、侯悦民)。

罗布泊(罗北凹地)硫酸盐型卤水钾矿的大规模成套技术开发,涉及三大技术系统,即采矿(卤)系统、盐田系统和装置加工系统。中国地质科学院矿产资源研究所主要从事罗北卤水资源勘查、成因与赋存规律等研究,查清了矿区的富钾卤水化学特征(氯化钾品位等)与分布规律、储层物性、卤水动力学条件与卤水富集区等,为采矿系统的首采区选择等奠定了科学基础。

7.长江中下游玢岩铁矿研究新进展

充分认识到膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用。根据长江中下游中下三叠统膏盐层与玢岩铁矿关系密切的现象,提出膏盐层不仅为成矿提供大量Na+、Cl-等矿化剂,还是重要氧化障,将岩浆熔体中Fe2+氧化成Fe3+,促使岩浆分异出铁氧化物,形成矿浆型铁矿。矿浆型和热液型矿体同时存在,两者在空间上具“双层成矿结构”(图37)。

图37 长江中下游玢岩铁矿“双层成矿结构”

8.铁矿床研究进展 

提出了5期铁矿大规模成矿动力学背景,将与4种铁矿类型有关的控矿系统划分为海底火山喷气-沉积型、超浅成侵入体型、中-浅成中酸性侵入体型、深成镁铁-超镁铁质侵入体型和叠加改造型5种类型,建立了沉积变质型、矽卡岩型和岩浆型铁矿的地质-地球物理模型,并对模型进行了验证,为成矿预测奠定了重要基础。

提出了BIF原始沉积物除二氧化硅、氢氧化铁胶体外,还有铁白云石泥新认识;总结了沉积变质型富铁矿的空间分布、矿石类型及成因机制;首次获得辽宁弓长岭二矿区大型富铁矿有关蚀变岩的U-Pb锆石年龄为1840±7Ma,厘定富铁矿的形成时代为中元古代;通过控矿构造研究,提出背斜对于矿体尤其是隐伏矿和富铁矿有明显的控制作用,韧性变形有利于硅铁分离形成富铁矿,贫铁矿层间断裂与其他断裂组成的断裂系统也有利于富铁矿的形成。

厘定了阿尔泰地区海相火山岩型铁矿形成时代为398~385Ma,西天山海相火山岩型铁矿形成时代为317~300Ma,宁芜地区梅山玢岩型铁矿形成时代为早白垩世;提出海相火山岩型铁矿的成矿动力学背景为大陆岩浆弧边缘环境;提出阿尔泰阿巴宫铁矿和宁芜地区玢岩铁矿属于基鲁纳型。

将新疆北部与火山-侵入岩有关的铁多金属矿划分为火山岩型、矽卡岩型、辉绿岩型和岩浆岩型,形成于5个成矿期:早泥盆世(407~384Ma)、中泥盆世(382~375Ma)、早石炭世(362~324Ma)、晚石炭世(323~302Ma)和早-中二叠世(289~261Ma)。形成于6种环境,阿尔泰早泥盆世为岩浆弧环境,准噶尔北缘中泥盆世为大洋岛弧环境,西天山早石炭世为岩浆弧环境、晚石炭世由俯冲-碰撞转换为拉长环境,东天山石炭纪为岛弧环境、早-中二叠世为后碰撞环境。提出与成矿有关的侵入岩多数为与火山岩同时代的潜火山岩,属同源演化的产物。

9.同位素地球化学研究新进展 

建立了锂同位素实验方法,分析精度与国际同类实验室水平相当,实现了标准样品的长期稳定重现,可用来测定天然样品的Li同位素组成。根据Li同位素研究成果,认为特提斯洋壳板片的流体参与了斑岩的源区富集,而俯冲印度地壳的流体/熔体参与了钾质超钾质火山岩的源区富集,提出了拉萨地块斑岩、钾质-超钾质火山岩成因模式。对比了裂谷环境与碰撞环境碳酸岩的源区特征。

10.率先利用石英毛细管合成流体包裹体技术,原位观测硫酸盐热还原反应(TSR)过程 

硫酸盐热还原反应广泛发生在各类油气盆地和与盆地流体有关的金属矿床内,因而对TSR反应机理的认识对于油气藏的开发利用和与盆地流体有关金属矿床成矿机理的认识均具有重要意义。长期以来,很多学者从野外地质特征、理论计算及实验模拟方面对TSR反应进行了大量的研究,但由于TSR反应过程复杂,存在一系列反应的中间产物,以往利用的淬火分析技术难以有效揭示TSR反应过程。针对这一难题,我们率先将最新开发出的石英毛细管合成流体包裹体技术引入TSR模拟实验中,结合原位的激光拉曼分析,实现了对高温高压下对TSR反应的原位观测。以往的研究认为S-H2O-CH4之间的反应并不是严格意义上的TSR反应(Chen et al.,2009),我们通过一系列模拟实验的开展,查明S-H2O-CH4体系在高温高压下的反应是分步进行的,其中包含了S的水解反应和高温下硫酸盐的热还原反应(TSR),并在250℃以上实现了CH4对硫酸根的还原,这一温度比以往模拟实验中利用CH4对硫酸根还原的温度更加接近于自然体系下TSR反应发生的温度,为深入理解自然体系甲烷参与TSR反应提供了重要的实验依据(图38)。

图38 石英毛细管合成流体包裹体(a)和原位激光拉曼光谱分析装置(b)

11.秦岭中生代花岗岩研究进展 

系统总结了秦岭中生代花岗岩演化特征,探讨了晚中生代花岗岩与钼等多金属矿的关系。揭示了秦岭早中生代花岗岩240~250Ma和225~190Ma两个阶段演化,厘定了俯冲碰撞到后碰撞的演化特征。厘定了晚中生代花岗岩160~130Ma和120~100Ma两阶段从I型向I-A过渡和A型演化趋势,并揭示了与钼矿的密切关系。通过中生代花岗岩同位素组成时空变化分析,初步查明了秦岭不同块体的地壳深部组成特征,对深入认识成矿分布规律提供了新依据。

12.个旧超大型锡-铜多金属矿研究进展 

与澳大利亚和美国同行合作对我国云南个旧超大型锡-铜多金属矿区的岩浆作用和成矿作用开展了解剖研究。

(1)个旧地区大规模岩浆-成矿作用背景。运用SHRIMP和LA-ICPMS高精度锆石U-Pb定年方法,对个旧地区基性-中性-酸性岩浆岩组合的形成时代进行了系统研究,发现这一套起源不同的岩浆岩的结晶时代基本一致,它们构成了双峰式的岩石组合。此外,提出该区花岗岩在形成过程中发生了强烈的分异结晶作用,成矿能力与分异程度正相关;辉长岩为岩石圈地幔物质发生熔融后经过少量的地壳混染而形成,暗色微粒包体是玄武质岩浆与长英质岩浆发生物理-化学交换的结果,碱性岩由幔源岩浆经历强烈的分异结晶作用形成,镁铁质岩墙为同一幔源岩浆受到大量地壳物质混染的结果。研究表明,个旧地区大规模岩浆-成矿作用形成于岩石圈伸展和强烈壳幔相互作用的背景(图39)。

图39个旧地区大规模岩浆-成矿作用模式

(2)个旧锡多金属矿床成因。结合个旧矿区的成矿金属元素空间分带和成矿流体物理-化学条件演化规律,认为个旧锡是具有典型的与花岗岩有关热液矿床的特征;H-O-S同位素系统填图结果支持成矿物质主要来源于花岗岩,早阶段的成矿流体以从花岗岩出溶的岩浆水为主,晚阶段天水/地表水发生了流体混合。云母Ar-Ar、辉钼矿Re-Os和LAICPMS锡石U-Pb测年结果证实,个旧地区成矿时代矿区与岩浆活动一致,发生于晚白垩世。(3)运用新技术与新方法探索“层间氧化矿”成因和S n的成矿条件。运用新近发展的Fe同位素分析技术,从矿化元素本身的角度对层间氧化矿进行了系统研究,发现不同氧化程度矿石的Fe同位素组成呈规律性的变化,认为这种矿体为后期氧化形成。运用SEM-CL和LA-ICP-MS技术对锡石晶体开展内部结构和微区原位微量元素研究,发现锡石环带结构的发育程度与花岗岩之间的距离存在负相关性,且不同成矿环境中的锡石均具有类似的微量元素特征,元素含量受控于锡石的原子半径及其电子价态,为Sn成矿条件提供了重要的新观察和新认识。

13.大瑶山地区与加里东期钨钼矿成矿作用 

初步构建了钦杭成矿带南西段大瑶山地区岩浆岩及相关矿床的时空格架,研究了岩浆岩类型、特征和成矿专属性。通过典型矿床解剖,确定了矿床类型,探讨了成矿机理,重新划分了成矿系列。提出大瑶山地区存在加里东期与花岗闪长(斑)岩有关的斑岩-矽卡岩-石英脉型钨钼铜成矿系列,具有巨大的找矿潜力,是今后大瑶山地区找矿的主攻方向之一。在此基础上,提出古龙-倒水-夏郢和大黎断裂带两个找矿远景区,并在已知社垌大型矿床外围新发现了3个斑岩型-矽卡岩-石英脉型钨钼铜铋矿床,在成矿理论创新指导矿产勘查工作方面做出了新的成绩。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/93965.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-07
下一篇2023-03-07

发表评论

登录后才能评论

评论列表(0条)

    保存