SEM、TEM、XRD、AES、STM、AFM的区别

SEM、TEM、XRD、AES、STM、AFM的区别,第1张

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。

1.铜箔的概念

铜箔是由铜加一定比例的其它金属打制而成的一种阴质性电解材料,用途是作为导体,是覆铜板(CCL)及印制电路板(PCB)制造的重要材料。铜箔具有低表面氧气特性,可以附着于各种不同基材, 如金属,绝缘材料等,拥有较宽的温度 使用范围。电子信息和锂电是铜箔主流应用领域,锂电铜箔相比电子铜箔性能要求更高。

2.铜箔的分类

锂电里一般只区分压延箔和电解箔,下面是压延箔和电解箔的生产工艺的对比。

3.锂离子电池铜箔的性能要求

铜箔在锂离子电池中既是负极活性材料的载体。又是负极电子的收集与传导体。因此对其有特殊的技术要求,即必须具有良好的导电性,表面能均匀地涂敷负极材料而不脱落,并具有良好的耐蚀性。

目前常用的粘结剂PVDF,SBR,PAA等,其粘结强度不仅取决于粘合剂本身的物理化学性能,而且与铜箔的表面特性有很大关系。涂层的粘结强度足够高时,可防止充彭电循环过程中负极的粉化脱落,或因过度膨胀收缩而剥离基片,降低循环容量保持率。反之,如果粘结强度过不到要求,则随着循环次数的增加·因涂层剥离程度如重而使电池内阻抗不断增大,循环容量衰减加剧。这就要求锂离子电池用铜箔需要具有良好的亲水性

4.铜箔亲水性的原理

众所周知,压延铜箔与电解铜箔不仅生产方式完全不同,更主要的是它们的金属结构也完全不同。研究表明,厚度小于12μm的电解铜箔其XRD衍射图谱中的主峰为(111)面,并且(311)面呈现一定的择优取向,随着铜箔厚度的增加,其(220)面衍射峰强度不断提高,其他晶面衍射强度则逐渐降低当铜箔厚度达到21μm时(220)晶面的织构系数达92%。很显然,要想简单地依靠生产工艺将电解铜箔的性能达到与压延铜箔完全一样几乎是不可能的。

水是由氢原子和氧原子组成的,氢的电负性为 2.1,氧的电负性为3.5,故水分子中O-H键的极性很强。实验证明,水分子中的两个O-H键之间成104°45′的夹角。水分子的偶极矩不等于零,正电荷的“重心”与负电荷的“重心”不重合,使得氢原子的一端带正电,氧原子的一端带负电,显示出很强的极性,因此水分子是极性很强的极性分子。

极性分子之间由于相互间的静电引力便有一定的亲合力,因此由极性分子构成的物质必然对水有亲合力。凡是对水有亲合力的物质都叫亲水物质。金属无机盐和金属氧化物等都是极性结构的物质,它们能和水产生很强的亲合力,因此都属于 亲水物质 。

有些物质分子的结构是对称的,因而不具有极性。非极性分子对非极性分子有亲合力,而对极性分子没有亲合力,这是根据结构相似的物质互溶原理得出的结论。由非极性分子构成的物质,其分子对水分子没有亲合力,称为 疏水物质 。

在有机化学中,“油”是非极性有机液体的总称, 因此疏水物质就一定有亲油的性质。将一些极性的官能团,如羟基(-OH)、氨基(-NH2)、羧基(-COOH)、羰基(-COH)、硝基(-NO2)等,引入疏水物质,可使其具有一定的极性,并因此产生亲水性。所谓亲水性,就是物质对水的亲合力的简单描述对于固体物质,其亲水性一般也称为润湿性。

关于润湿角,金属与水的接触角θ一般小于90°,所以铜箔表面愈粗糙,润湿性愈好当θ>90°时,固体表面愈粗糙, 表面润湿性愈差。随着表面粗糙程度的增加,容易润湿的表面变得更容易润湿,而难润湿的表面变得更难润湿。

5.铜箔亲水性的检测标准

锂离子电池生产企业对压延铜箔的亲水性检验是很简单的,仅仅使用毛刷将纯水在铜箔表面轻轻一刷,观察有无水膜破裂现象出现。

6.铜箔亲水性的影响因素

6.1 铜箔亲水性与铜箔表面粗糙度关系不明显

6.2 亲水性与铜箔金相组织有关

通过扫描电镜(SEM)可以发现,亲水性好的铜箔,其晶粒细密,表面粗糙度相对较低。表面粗糙度低的生箔,经表面处理后其亲水性仍旧良好。这主要由于电解铜箔的球团晶粒越细,其真实比表面积就越大而表面粗糙度越大,其真实表面积反而越低,导致铜箔亲水性降低。

6.3 亲水性与铜箔表面状态、反应有关

如果将铜箔长时间地放置在空气中,空气中的非极性气体分子N2、02、C02等会吸附于金属表面,从而改变铜箔的亲水性。例如将亲水性良好的铜箔在空气中暴露90min后其亲水性明显下降。这是由于比表面能高的金属表面很容易被表面张力低的液体润湿,因为润湿的过程使体系的自由能下降。新金属表面的比表面能都较高(铜的比表面能约为1.0 J/m2,铝和锌的约为0.7-0.9 J/m2),但是如将铜箔表面尤其是新电解铜箔表面暴露在空气中,则会吸附许多气体分子而形成单分子吸附层。表面压的存在明显降低了铜箔表面的润湿性。

除了非极性气体分子外,铜箔表面还可能吸附空气中的尘埃、有机油污,而使其疏水性增强。因此,对于锂离子电池用铜箔的包装必须采用真空包装,减少铜箔表面的氧化,保持铜箔的亲水性。

以上整理自文献资料《电解铜箔亲水性研究》


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/103256.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-09
下一篇2023-03-09

发表评论

登录后才能评论

评论列表(0条)

    保存