帮忙译个短文啊

帮忙译个短文啊,第1张

我们伸出援手

毛震青(音),13岁,住在江苏省苏州市。他的家在太湖边。最近,许多蓝藻让湖水发臭。毛听说无锡的人们甚至无法饮用到干净的水了

“我想帮他们”毛说。他加入了他的学校——苏州外语学校的“水质调查小组”。这个小组里有17个成员。他们的工作是测试水质。政府给了他们一些测试工具。

关于氧化亚铜的电化学制备的目的和意义相关资料如下

氧化亚铜是一种性能优异的p型半导体材料,其带隙宽度与可见光波长范围相对应,适合被太阳光直接激发而具有光催化和光电特性,非常具有应用潜力。但是氧化亚铜基光催化和光电器件并没有得到普遍应用,原因是受现有方法和工艺的限制,氧化亚铜的制备成本难以降低、制备过程较为繁复,加之本身量子效率不高,实际性能很难令人满意。因此,探索和丰富氧化亚铜的制备手段,并研究制备工艺与氧化亚铜自身属性和应用性能之间的关系,对于拓展氧化亚铜基光催化和光伏材料的应用以及能源产业的优化都具有重要的意义。从理论上讲,氧化亚铜的量子效率可以通过两种方式提高,一是通过利用异质结之间的势垒来对光生电子-空穴对实现有效分离,二是减小氧化亚铜的晶粒尺寸来阻碍光生电子-空穴对的复合。所以,本文探索了阳极氧化和电沉积等两种电化学制备方法,分别在铜箔和导电玻璃表面制备了氧化亚铜薄膜,表征了其光催化和光电性能,并重点探讨了制备工艺、薄膜成分和形貌以及光催化和光电性能方面的相互作用机理。本文的主要研究内容如下:1.利用阳极氧化+水解/还原两步法在铜箔上制备了氧化亚铜薄膜。研究了阳极氧化过程中氯化铵电解液pH值和浓度、电流密度、温度以及搅拌等工艺条件对于阳极表面成分和形貌的影响,并结合固-液界面双电层动力学、热力学模型和电化学表征数据对于影响机理进行了分析。研究表明:在阳极氧化过程中,当电解液为酸性时,铜箔表面主要生成氯化亚铜薄膜,当电解液为碱性时,则生成氢氧化铜薄膜,因为氯化铵电解液的pH值升高无论是在动力学方面还是热力学方面都更适合氢氧化铜的生成电解液浓度升高会使产物的析出电流增加,电极表面双电层中的电荷传输和离子结合速率都得到提升,有利于氢氧化铜的生成较高的电解液温度有利于氢氧化铜的水解反应,同时有利于氯化亚铜晶粒的长大在阳极氧化过程中加入搅拌是防止钝化膜生成的一个必要手段,但是搅拌速度不宜过快。阳极氧化完成后,将制得的氯化亚铜薄膜浸入双氧水稀溶液并光照,可以利用水解和发泡反应将氯化亚铜薄膜转化为氧化亚铜海绵状多孔纳米晶薄膜制得的氢氧化铜薄膜则可以通过在还原性气氛下热处理或与葡萄糖溶液反应来进行还原,转化为氧化亚铜。2.对氧化亚铜薄膜的光催化性能进行了表征。薄膜在90分钟内对甲基橙的光催化降解率达到了60%~70%氧化亚铜薄膜还可以光催化加速氧化剂对亚甲基蓝等有机染料的氧化脱色,使得脱色速率提高了一倍以上氧化亚铜薄膜在光照下对于污染河水水样中的藻类具有非常显著的杀灭效果,4小时内对蓝藻、绿藻和杂藻的杀灭率分别达到了100%、100%和90.9%同时,对水样中有机污染物也起到了明显的降解作用,4小时内水样中总碳、总磷和总氮含量分别下降了10.6%、55.4%和18.4%。氧化亚铜薄膜还在光解水析氧反应中具有很高的催化活性,8小时内的单位质量产氧量达到了172.90~233.27μmol每毫克氧化亚铜。

氨氮偏高 须分清分子态还是离子态

一般氨氮偏高,在养殖户养殖过程中,常使用的方案就是使用降解氨氮的药物(普遍为氧化剂或者底改类产品),效果并不是很理想。

实际上,氨氮在水体检测的时候,我们用普通的试剂盒检测的为总氨量,也就是说,是离子态氨氮和分子态氨的总量。藻类繁殖首先吸收的就是离子态氨氮,也就是说,高剂量的氨氮,有可能就是藻类繁殖最丰盛的营养源。

氨氮的危害关键取决于水体pH变化,当水体偏碱的时候,几乎全部为分子态氨氮,是有毒性的,鱼会产生浮头、不跟增氧机的现象,实际上是一种潜在的中毒症状;当水体偏酸的时候,几乎全部是没有毒性的离子态氨氮,所以,不是所有的氨氮都都对于鱼类有害,也并不是只要氨氮高就一定是危险的水质。

水质分析盒检测得出水体氨氮偏高,说明了水体的营养物质丰盛,也就是水体本不缺乏氮肥。但是,很多鱼塘表现出来的就是底肥很好,但是,表层肥不起来,也就是藻类并不是很好。

猪粪塘、鸭粪塘,测出来的氨氮明显偏高,但是水质却偏瘦,主要问题的关键是,藻类繁殖不仅需要氮肥,还需要磷肥与钾肥,达到一定的比例,才可以被吸收利用,否则,只能逐渐沉积。其危害表现为氨氮偏高,一旦水体碱性偏高,就会导致有毒性的分子氨氮对于鱼类造成危害,这就是其中的利害关系。

所以,我们近阶段依旧提出降碱不降氨的说法。当水质检测氨氮偏高时候,首先检测水体酸碱度,如果水体偏酸,可以用磷酸二氢钾(不要使用磷酸钙,容易板结塘底)加EM菌加芽孢菌先后泼洒,几天后可以很快将氨氮吸收降解;

如果检测水体偏碱,首先使用有机酸解毒剂,全池解毒,降低酸碱度,之后用磷酸二氢钾加EM菌加芽孢菌先后泼洒,几天后同样可以很快将氨氮吸收降解。

在氨氮偏高的时候,很多人喜欢使用各种氧化剂,实际上这种方案只适用于平时预防,避免各种有机质沉积,有很大的帮助。当前水体环境往往是超负荷的,整个水体环境基本上是还原性的,也就是说,投入再多的氧化剂,也无法改变强大的还原体系,只能缓解水体环境的进一步恶化,确保鱼体活动正常。

氨氮偏高水体危害严重需更加高度重视

水产养殖水质优劣程度的衡量只能以离子态铵(NH﹢4--N)和非离子态氨(NH3--N)两种形态来判定。例如在酸性水体,离子态铵(NH﹢4--N)受高温高压的影响转化成亚硝酸氮(NO2¯-N),这会降低水生动物血液的输氧功能,使水生动物机体代谢功能下降。

另外不带电非离子态氨(NH3--N)与水产动物机体组织亲和力特别强,可破坏上皮组织结构,使机体肿胀,细胞坏死,血淋巴流失,氨还会刺激胃肠整个消化系统的粘液细胞,使之分泌大量的粘液,造成消化不良,容易引起厌氧菌感染而患痢疾肠炎病,(这时饲料大量添加黄连素原粉2g/Kg饲料)。

离子态铵(NH4--N)会抑制体内钠离子的运输,阻止排泄物(NH3)的排泄,引起机体渗透压失调,降低血液输氧功能而逃死。总之,只要养殖池塘存在氨氮偏高水体必然存在对水生动物毒性很大氮化合物,它们不仅能影响水产动物免疫系统,还会降低机体的抗病能力。因此在养殖过程中要求氨氮总量不超0.3mg/L。

虽然氨氮能作为浮游植物氮能量源,它擅长促进大型藻类(蓝藻)及水草生长,但是水体有益浮游植物繁殖生长习性讲究的是氮(N)、磷(P)、钾(K)、钙(Ca)比例协调,否则氨氮偏高水体会造成有益浮游植物伤肥而倒藻死亡,引起水体离子氧吧不足而缺氧。或者还会进一步促进水体单一性蓝藻的大量生长引起赤潮。

目前水产药品市场上大多数微生物制剂含量太低,不擅长降低氨氮偏高水体(这只能代表我个人意见),只有作为协作作用。唯一高效方法是加强水体有益浮游藻类繁殖,从而促进光合作用。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/117912.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-13
下一篇2023-03-13

发表评论

登录后才能评论

评论列表(0条)

    保存