1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
参考资料:百度百科-扫描电子显微镜
百度指数是SEM经常会用到的工具之一,各项参数到底是什么意义呢?1.用户关注度:
反映用户在百度搜索产品上搜索量的一个指标,用户关注度数值越大,说明百度上用户的搜索次数越多
2.媒体关注度:
反映过去30天内百度新闻搜索中与该关键词相关的新闻数量个一个指标,相关新闻越多,媒体关注度数值就越大。
3.上升最快的搜索词,有助于我们发现新出现的长尾关键词,这类长尾关键词较之那些之前就有的长尾关键词,往往有更低的竞争强度,能带来更高的投放效果。
结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。
SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。
测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。
如何描述它们之间的关系?可以通过以下方式:
1. 若因子指标是连续的,用线性回归方程(linear regression equations);
2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
结构模型 则在一个多元回归方程中描述了三种变量关系:
1. 因子之间的关系;
2. 观察变量之间的关系;
3. 因子和不作为因子指标的观察变量之间的关系。
同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:
1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);
2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。
以下特殊功能也可以通过SEM实现:
1. 单个或多组分析(Single or multiple group analysis);
2. 缺失值(Missing data);
3. 复杂的调查数据(Complex survey data);
4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);
5. 随机斜率(Random slopes);
6. 限制线性和非线性参数(Linear and non-linear parameter constraints);
7. 包括特定路径的间接作用(Indirect effects including specific paths);
8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);
9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);
10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。
以上功能也适用于CFA和MIMIC。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)