华南理工大学:新方法制备碳气凝胶,用于柔性电子器件

华南理工大学:新方法制备碳气凝胶,用于柔性电子器件,第1张

本文要点:

提出一种纳米纤维碳连接方法,通过气泡模板法制备超轻 rGO/CNF 碳气凝胶(CAG)。

成果简介

超轻、高压缩性和超弹性的碳材料在可穿戴和柔性电子器件中有很大的应用前景,但由于碳材料的脆性,其制备仍然是一个挑战。 华南理工大学刘传富教授团队在《CHEMNANOMAT》 期刊发表名为“Enhancing the Mechanical Performance of Reduced Graphene Oxide Aerogel with Cellulose Nanofibers”的论文, 研究通过 增强纤维素纳米纤维 (CNF) 的氧化石墨烯 (GO) 液晶稳定气泡成功制备了超低密度、高机械性能的碳气凝胶 。

还原氧化石墨烯(rGO)纳米片中引入CNF后,通过焊接效应增强了rGO纳米片之间的相互作用,限制了rGO纳米片的滑移和微球之间的剥离,从而显著提高了材料的力学性能。所制备的碳气凝胶具有超高的压缩性(高达99%的应变)和弹性(在50%应变下10000次循环后90.1%的应力保持率和99.0%的高度保持率),通过各种方法制备的碳气凝胶均优于现有的气泡模板碳气凝胶和许多其它碳材料。这种结构特征导致了快速稳定的电流响应和对外部应变和压力的高灵敏度,使碳气凝胶能够检测非常小的压力和从手指弯曲到脉搏的各种人体运动。这些优点使得碳气凝胶在柔性电子器件中具有广阔的应用前景。

图文导读

图1、rGO/CNF 碳气凝胶的制备示意图(a)和 CNF 之间以及 CNF 和 GO 之间的相互作用(b)。没有 (c) 和 (d) 交叉偏振器的 GO/CNF 气泡乳液的 POM 图像。CAG (e) 的 SEM 图像。超轻 CAG 立在花瓣上的照片 (f)。

图2.GO (a) 和 CNF (b) 的 AFM 图像和相应的高度图像。GO(c 和 d)和 GO/CNF(e 和 f)的 SEM 图像显示了 CNF 在起皱的 GO 纳米片中的分布。rGO (g) 和 rGO/C-CNF (h) 的 TEM 图像揭示了 C-CNF 在 rGO 纳米片中的均匀分布。

图3.宏观可视化显示 rGO/CNF 碳气凝胶的超弹性(a)。具有不同 CNF 含量的碳气凝胶的密度(b)。AG 和 CAG-X 在 50% 应变下的应力-应变曲线 (c)。AG 和 CAG-X 在 50% 应变下经过 1000 次压缩循环后的应力保持率和高度保持率(d)。AG、CAG-5、CAG-10、CAG-20、CAG-30 和 CAG-50 (e) 的 SEM 图像。

图4、说明 AG (a) 和 CAG (b) 的可压缩性和弹性机制的示意图。CNF碳纳米纤维将rGO纳米片焊接在一起,限制了rGO纳米片的滑动,从而提高了机械强度和抗疲劳性。rGO/CNF 纳米片的有限元模拟(c)。

图5、CAG-20 具有超强的压缩性、弹性和抗疲劳性。CAG-20 在不同压缩应变下的应力-应变曲线 (a)。50% 应变下 1、1000、10000 和 20000 次循环的应力-应变曲线 (b)。极端应变为 99% 时的应力-应变曲线 (c)。90% 应变下 200 次循环的应力-应变曲线 (d)。CAG-20 压缩前的 SEM 图像(e)。CAG-20 在 50% 应变下经过 20,000 次压缩循环后的 SEM 图像 (f)。各种碳材料的应力/密度指数 (g)、应力保持率 (h) 和高度保持率 (i) 的比较。

图6.应变/应力——CAG-20 的电流响应和灵敏度。应变为 10% 至 70% (a) 时的电流强度。在 50% 应变和 1 V 的恒定电压下,1000 次循环的电流输出 (b)。0-100 Pa 时的线性灵敏度(插入:0.1-7 kPa 时的灵敏度)(c)。组装基于 CAG-20 的传感器 (d)。来自轻压 (e)、手指弯曲 (f)、肘部弯曲 (g) 和面部表情 (h) 的电流信号。脉搏信号检测(i)。

小结

综上所述,通过GO液晶的气泡模板法制备了具有低密度、高机械和传感性能的rGO/CNF碳气凝胶。碳化的 CNF 通过增强 rGO 纳米片之间的相互作用,在提高碳气凝胶的机械强度和结构稳定性方面发挥着至关重要的作用。 碳气凝胶表现出超高的压缩性和弹性,以及抗疲劳性。高机械性能和稳定的微观结构赋予碳气凝胶快速稳定的电流响应和高灵敏度。因此,它在用于检测生物信号的可穿戴设备中具有巨大的应用潜力。

链接:https://doi.org/10.1002/cnma.202100150

文献:

气凝胶是一种神奇的材料!它非常轻,即使把一块气凝胶放在花蕊上也不会将花蕊压弯。之所以如此轻是因为气凝胶的内部包含了许许多多细小的孔,这些孔的尺寸在纳米或微米尺度,所有孔的体积合起来占整个气凝胶体积的绝大多数,甚至可以达到99%以上。所以气凝胶是世界上已知的密度最低的人造固体材料,有“固态烟雾”(solid smoke) 之称。

随着研究的发展,气凝胶的定义也随之不断变化。最初,由湿凝胶经过特殊的超临界干燥获得的材料称之为气凝胶。随着干燥方法和气凝胶制备技术的发展,通过冷冻干燥、常压干燥、真空干燥等技术,也可以获得结构完整的轻质多孔材料。1998年Hüsing 和 Schubert等提出湿凝胶经过干燥、其凝胶网络和孔结构可以大部分保留的多孔材料都称之为气凝胶,这一定义更着眼于气凝胶材料本身的结构特征。随着其他新型气凝胶的开发,目前对其定义再作修改,认为以零维、一维或二维材料作为分散相的溶胶体系,通过连续或非连续的凝胶化手段获得凝胶后,再经干燥得到凝胶网络和孔结构高度保持的材料即为气凝胶。

气凝胶最早由美国科学工作者Kistler在1931年因与其友打赌制得。出现在这个世界上70多年后,由于具有多方面优异性能,气凝胶已荣膺15项吉尼斯世界纪录。

1、最低的导热系数

气凝胶的纳米级微孔洞抑制了气体分子对热传导的贡献,导热系数可低于0.016W/(m·K)。通过掺杂的手段,还可进一步降低硅气凝胶的辐射热传导,常温常压下掺碳气凝胶的热导率可低达0.013W/(m•K),是目前导热系数最低的固态材料。

2、最低密度

气凝胶很早就作为最轻的固体材料入选吉尼斯世界纪录。近年来,这一纪录还在被不断刷新。2015年,东华大学俞建勇院士、丁彬教授带领的纳米纤维研究团队,利用普通纤维膜材料开发出了一种超轻、超弹的纤维气凝胶,经中国计量认证结果显示,这种纤维气凝胶的固态材料密度仅为0.12毫克/立方厘米,大约为空气密度的1/10。

3、最宽的密度范 围

因为组织成分不同、制作工艺差异,气凝胶的密度变化范围非常之广——其体密度在0.0012-0.500g/m3范围内可调。这就赋予了气凝胶材料更为广阔的应用空间。

4、最宽的压缩模量

气凝胶的压缩模量可在6个数量级的范围内变化。如此宽阔的压缩模量变化范围,决定了气凝胶材料的密度可调节性,从而可实现不同密度要求的功能应用。

5、最小的孔径

气凝胶的孔径一般集中在50nm左右,最小的孔径甚至可小于1nm。纤细的纳米级结构,使气凝胶材料的热导率极低,并具有极大的比表面积。

6、最高的孔洞率

气凝胶的孔洞率可高达99.9%,表面的无数小孔使其成为了在水中吸附污染物的理想材料。而且,由于具有特别大的比表而积。气凝胶在作为新型催化剂或催化剂的载体方面,亦有着广阔的应用前景。

7、最低的声传播速度

气凝胶声阻抗可变范围较大(103-107kg/m2 · s),是一种较理想的超探测器的声阻耦合材料,如常用声阻匝Zp=1.5×107kg/m2 · s的压电陶瓷作为超声波的发生器和探测器,而空气的声阻只有400kg/m2 · s。

8、最高的声阻抗

气凝胶的声阻抗高达106kg/m2 · s,气凝胶的纵向声传播速率极低,而声阻随密度变化范围大,因此,它是一种理想的声阻抗耦合材料。

9、最低的介电常数

气凝胶材料的介电常数小于1.003,是一种良好的介电材料,可以降低集成电路的漏电电流,降低导线之间的电容效应,降低集成电路发热等。

10、最低的折射率

因为气凝胶内空气的占比率极高,所以其具有极低的折射率——可达到1.007,非常接近空气的折射率(1.0)。这项特性已被科学家应用在光学材料上。

11、最宽的折射率范围

气凝胶的透光性非常好,通过调控气凝胶密度,折射率可在1.007-1.24之间连续调节,可用来制作探测器。而且,用气凝胶制备的探测器,结构简单,造价较低。

12、最低的损耗角正切

气凝胶具有极低的损耗角正切,其损耗角正切值小于10-4,因此其透波性非常好,是一种良好的透波材料。

13、最低的杨氏模量

气凝胶的杨氏模量小于106N/m2,比相应非孔性玻璃态材料低4个数量级。

14、第一次实现从彗星采集样品

人类第一次从彗星收集到样本,就是使用了“气凝胶手套”。这份珍贵的材料于2006年1月15日返回地球,该样品来自2号彗星,目前,科学家们正在分析、了解这一原始冰体的化学组成。

15、最不密集的3D打印结构

三名来自不同大学的材料工程师开发的3D打印石墨烯气凝胶,已被吉尼斯世界纪录评为“最不密集的3D打印结构”,它将出现在吉尼斯世界纪录2018年版本中。 


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/192353.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-31
下一篇2023-03-31

发表评论

登录后才能评论

评论列表(0条)

    保存