用于无枝晶耐用锌电池的工程化多功能分子骨架层
第一作者:于铧铭
通讯作者:陈月皎*,陈立宝*
单位:中南大学
近日,来自中南大学的陈立宝、陈月皎课题组等人,在国际知名期刊Nano Energy上发表题为“Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries”的观点文章。 该观点文章采用一种可扩展、低成本的浸涂技术,整合硅烷疏水性和有机磷酸锌优异亲锌性,在锌负极上构建了超薄多功能层(MTSi-Hedp-Zn),实现锌负极无枝晶稳定长循环。DFT计算和COMSOL模拟结果表明,在分子骨架的顶部有丰富的O-Si-CH3基团作为疏水嵌块,这是阻止溶剂化水腐蚀的影响因素。主链有机磷酸块上的亲锌P=O键作为Zn2+快速吸附和输运动力学的吸引区。
同时,这种组合使锌金属上的表面首选(002)晶体面,使界面电场协同均匀化,在没有枝晶和副反应的情况下优先平坦生长。因此,MTSi-Hedp-Zn电极在1和10 mAcm-2时循环寿命超过2000 h,极化电压分别为24.3和67.5 mV。与正极组装的全电池(CNT/MnO2和五氧化二钒)都比裸锌负极有更高的容量保持率。硅烷-有机磷酸的疏水亲锌多功能界面为设计无枝晶和无腐蚀的锌电极提供了重要的构建策略。
要点一:MTSi-Hedp-Zn的设计和界面组成研究
XPS能谱结果可以证明,MTSi中的Si-OH基团可以与Hedp分子中的P-OH基团发生反应。因此,MTSi、Hedp和Zn之间存在较强的化学键合,从而对锌箔具有良好的粘附强度。DFT结果表明,通过络合和热固化工艺得到的MTSi-Hedp具有显著的电子亲和性和大量亲锌位点。这有利于锌离子在纳米膜层上的均匀、快速沉积,使MTSi-Hedp-Zn负极在速率能力、可逆性和循环性方面具有优异的电化学性能。
图2 (a) 裸锌箔和 (b) MTSi-Hedp-Zn 电极的 SEM 图像。 (c) MTSi-Hedp-Zn 电极的 EPMA 图像和相应的元素映射。 (d, e) MTSi-Hedp-Zn 电极的 XPS 分析。 (f) MTSi-Hedp-Zn 电极的 FTIR 光谱。 (g) 计算的三个有机分子的前沿分子轨道能量。 (h) MTSi-Hedp-Zn 的计算 ESP 分布。
要点二:MTSi-Hedp-Zn耐腐蚀性研究
有疏水功能块的MTSi-Hedp保护层可以有效抑制锌金属负极在水系电解质中的腐蚀。由于其自身具备大量的疏水功能块(O-Si-CH3基团),可以有效实现锌负极表面去溶剂化,阻止活性水分子与锌负极的直接接触。采用飞行时间二次离子质谱(TOF-SIMS)和差分电化学质谱(DEMS)评估其抑制析氢的能力,极少的副产物堆积和氢气析出量表明,MTSi-Hedp-Zn负极可有效抑制锌负极腐蚀。
图3 电极在 2 M ZnSO4 水溶液中浸泡一周的 SEM 图像:(a)锌箔和(b)MTSi-Hedp-Zn。 (c) Zn 和 MTSi-Hedp-Zn 电极在 2 M ZnSO4 水溶液中浸泡一周后的相应 XRD 图谱。 (d) 裸 Zn 和 (e) MTSi-Hedp-Zn 电极上电解质的接触角。 (f) 裸 Zn 和 MTSi-Hedp-Zn 电极在 2 M ZnSO4 水溶液中的线性极化曲线。 (g) 裸 Zn 和 (h) MTSi-Hedp-Zn 电极的 TOF-SIMS 映射图像(ZnO+ 物质)。 原位 DEMS 曲线显示在第一个循环期间释放 H2 气体:(i) Zn//Zn 和 (j) MTSi-Hedp-Zn//MTSi-Hedp-Zn 对称电池。 (k) Zn//Zn 和 MTSi-Hedp-Zn//MTSi-Hedp-Zn 电池在经历交替循环(1 mA cm-2 和 1 mAh cm-2)和静止过程时的电化学性能。
要点三:锌负极的稳定性和电化学性能
基于上述发现和分析,MTSi-Hedp-Zn电极在疏水功能块和亲锌构建块的多功能作用下表现出优异的电化学性能。MTSi-Hedp-Zn在2000小时内保持了优越的循环稳定性,并且始终保持着极低的极化电压,证明了其作为ZIBs的高性能锌负极的有效性。此外,在倍率性能测试中,MTSi-Hedp-Zn负极具有优异的循环可逆性和结构稳定性。在整个循环中,均能保持较小的极化电压和较低的能垒,这表明电极表面没有阻碍离子传导的有害副产物的积累,从而实现了极其可逆的镀锌/剥离。
图4 (a) 对于 1 mAh cm-2,对称电池在 1 mA cm-2 下的电流-电压曲线。 (b) 对称电池在第 25 次循环时的放大电压曲线。 (c) 对称电池在 0.5 到 10 mA cm-2 的不同电流密度下的倍率性能,容量为 1 mAh cm-2。 ( d )在逐步增加的电流密度下对称电池的潜在演变。 (e) Zn//Zn 和 MTSi-Hedp-Zn//MTSi-Hedp-Zn 对称电池在 1 mA cm-2, 0.5 mAh cm-2 的长期电流-电压曲线。 (f) 原位光学显微镜观察 (f) 裸 Zn 和 (g) MTSi-Hedp-Zn 电极在 10 mA cm-2 下的 Zn 沉积。
要点四:无枝晶锌沉积行为
形成的MTSi-Hedp-Zn层可以在丰富的表面疏水O-Si-CH3基团下阻断水,促进Zn2+溶剂化鞘的去除。这种包含大量亲锌-Zn-O-P=O基团的保护层也促进了锌离子的迁移,为锌的沉积提供了更多的亲锌位点和形核位点。MTSi-和hedp-结构的协同效应使稳定的循环和快速的Zn2+动力学具有平坦的沉积形态。
图5. 50 次循环后电极的 SEM 图像:(a,b)裸 Zn; (c, d) MTSi-Hedp-Zn。 50 个循环后电极的光学表面轮廓测量图像:(e)裸锌和(f)MTSi-Hedp-Zn。 在 (g) 裸 Zn 和 (h) MTSi-Hedp-Zn 电极上沉积过程中 Zn 离子通量分布的模拟。 (i) 在裸锌箔(上)和 MTSi-Hedp-Zn 电极(下)上镀锌的示意图。
要点五:全电池的电化学性能研究
与CNT/MnO2正极材料匹配后,MTSi-Hedp-Zn//CNT/MnO2电池的放电容量可保持在194 mAh g-1,300次循环后可保持在84.2%. 与商用V2O5材料匹配后,全电池在3Ag-1条件下进行2000次循环后,也提供了稳定的循环和91.9%的高容量保留率。同时,MTSi-Hedp-Zn负极也在倍率性能测试和自放电测试中表现出极大的优势。
图5 (a) 使用 CNT/MnO2 正极在 1 A g-1 的电流密度下与裸 Zn 和 MTSi-Hedp-Zn 电极配对的全电池的循环比较。 在 2 C 下 100 次循环后阳极的 SEM 图像:(b)裸锌和(c)MTSi-Hedp-Zn。 (d) 循环前使用 CNT/MnO2 作为阴极材料的全电池的 EIS 曲线。 (e) 0.1 mV s 1 时的 CV 曲线。 (f) 自放电曲线。 (g) Zn//V2O5 和 MTSi-Hedp-Zn//V2O5 全电池在 3 A g-1 电流密度下的长期循环性能。 (h) MTSi-Hedp-Zn//CNT/MnO2 软包电池的照片。
Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, https://doi.org/10.1016/j.nanoen.2022.107426.
【通讯作者简介】
陈月皎 副教授简介:中南大学粉末冶金研究院副教授。2015年获湖南大学博士学位,之后在香港理工大学从事博士后研究(2016-2018年)。她的研究兴趣集中在高性能电池,如锌/锂离子电池和柔性能源设备。
陈立宝 教授简介:中南大学粉末冶金研究院教授。2007年毕业于中国科学院上海微系统与信息技术研究所,获材料物理与化学博士学位。他的研究方向是特种锂电池和储能系统及其关键材料,包括宽温域锂离子电池、高比能锂金属电池和锌离子电池。
【第一作者介绍】
于铧铭 :中南大学粉末冶金研究院2020级硕士研究生。主要从事水系锌离子电池和电容器的材料设计和性能优化,包括锌负极表面修饰、结构试剂和电解液优化等。
成果简介
由二维MXene材料制成的独立和可弯曲薄膜由于其高度的灵活性、结构稳定性和高导电性,已显示出作为储能器件电极的巨大潜力。然而,MXene板不可避免重新堆叠很大程度上限制了其电化学性能。 本文,西北工业大学材料学院党阿磊、李铁虎教授等研究人员在《ACS Appl. Energy Mater.》期刊 发表名为“Flexible Ti3C2Tx/Carbon Nanotubes/CuS Film Electrodes Based on a Dual-Structural Design for High-Performance All-Solid-State Supercapacitors”的论文, 研究通过交替过滤Ti3C2Tx/碳纳米管(CNT)杂化和CuS分散的逐层(LbL)方法,通过双重结构设计制备了具有三明治状结构的膜电极。
引入的碳纳米管和赝电容CU提供了丰富的活性位点,以增加电极的存储容量。增大的层间距有利于电解质离子的传输。因此,厚度为17μm的优化Ti3C2Tx/CNTs/CuS-LbL-15薄膜电极(1.7 mg/cm3)在聚乙烯醇(PVA)/H2SO4凝胶电解质中仍表现出1 a/g的高重量电容(336.7 F/g)和体积电容(572.4 F/cm3),这两者在过去的报告中在相同厚度下都是最高的。同时,该样品在电流密度为9A/g时表现出令人印象深刻的速率能力,57%的电容保持率,在高速率为5a/g的5000次循环后保持99.6%的初始容量的超稳定循环,以及在不同弯曲状态下的良好柔韧性。此外,全固态对称超级电容器在340 W/L的功率密度下显示出12.72 Wh/L的能量密度。这项工作为组装高性能储能器件的Ti3C2Tx/CNT和CuS混合电极提供了有效途径。
图文导读
图1. (a) LbL法制备夹层状Ti3C2Tx /CNTs/CuS薄膜的工艺示意图。(b)在直径为5mm的玻璃棒上包裹独立的柔性 Ti3C2Tx /CNTs/CuS薄膜的数字图像,以及 (c) 用手折叠的相应平面状薄膜。
图2. Ti3C2Tx /CuS-LbL-5 (a) 和Ti3C2Tx /CuS-LbL-15 (b) 薄膜横截面的SEM图像及其对应的 Ti 和铜元素。(c) 样品XRD光谱的比较。(d)和(e)分别是(c)在2θ的5-10和26-35 范围内的放大图。(f) 样品的相应拉曼光谱。
图3. (a) Ti3C2 Tx基薄膜电极全固态超级电容器示意图。(b) 纯Ti3C2 Tx、Ti3C2 Tx /CuS-LbL-5 和Ti3C2 Tx/CuS-LbL-15薄膜在5 mV扫描速率下的CV曲线比较/秒。(c) Ti3C2 Tx/CuS-LbL-15在1至9 A/g 的不同电流密度下的恒电流充电/放电 (GCD) 曲线。(d) Ti3C2 Tx/CuS-LbL-15 的CV曲线比较和Ti3C2 Tx/CuS-hybrid-15在5mV/s 的扫描速率下和 (e) 在1A/g电流密度下的相应GCD曲线。
图4、电化学性能
图5. (a) 组装后的超级电容器在不同弯曲状态下的光学图像。(b) Ti3C2 Tx/CNTs/CuS-LbL-5薄膜在5 mV/s的扫描速率下不同弯曲角度的CV曲线。(c) 与之前报道的作品相比,超级电容器的体积功率和能量密度图。
小结
综上所述,采用 LbL 方法制备了具有夹层结构的可弯曲和独立的 Ti3C2 Tx /CNTs/CuS 复合膜电极,其中 Ti3C2 Tx/CNTs 杂化片材和CuS活性材料分别为通过过滤交替堆积。这项工作为全固态SCs设计高性能电极提供了一种有效的方法,在柔性和可穿戴电子产品中具有巨大的应用潜力。
文献:
https://doi.org/10.1021/acsaem.2c01738
20-100万倍。碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管sem20-100万倍之间连续可调,有很大的景深,视野大,成像富有立体感,可直接观察各种试样。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)