SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。
测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。
如何描述它们之间的关系?可以通过以下方式:
1. 若因子指标是连续的,用线性回归方程(linear regression equations);
2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
结构模型 则在一个多元回归方程中描述了三种变量关系:
1. 因子之间的关系;
2. 观察变量之间的关系;
3. 因子和不作为因子指标的观察变量之间的关系。
同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:
1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);
2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。
以下特殊功能也可以通过SEM实现:
1. 单个或多组分析(Single or multiple group analysis);
2. 缺失值(Missing data);
3. 复杂的调查数据(Complex survey data);
4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);
5. 随机斜率(Random slopes);
6. 限制线性和非线性参数(Linear and non-linear parameter constraints);
7. 包括特定路径的间接作用(Indirect effects including specific paths);
8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);
9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);
10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。
以上功能也适用于CFA和MIMIC。
可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料性质选择适当的变量变换方法。1、对数变换 即将原始数据X的对数值作为新的分布数据:
X’=lgX
当原始数据中有小值及零时,亦可取X’=lg(X+1)
还可根据需要选用X’=lg(X+k)或X’=lg(k-X)
对数变换常用于(1)使服从对数正态分布的数据正态化。如环境中某些污染物的分布,人体中某些微量元素的分布等,可用对数正态分布改善其正态性。
(2)使数据达到方差齐性,特别是各样本的标准差与均数成比例或变异系数CV接近于一个常数时。
2、平方根变换 即将原始数据X的平方根作为新的分布数据。
X’=sqrt(X)
平方根变换常用于:
1)使服从Poission分布的计数资料或轻度偏态资料正态化,可用平方根变换使其正态化。2)当各样本的方差与均数呈正相关时,可使资料达到方差齐性。
3)倒数变换 即将原始数据X的倒数作为新的分析数据。
X’=1/X
常用于资料两端波动较大的资料,可使极端值的影响减小。
4、平方根反正旋变换 即将原始数据X的平方根反正玄值做为新的分析数据。
X’=sin-1sqrt(X)
常用于服从二项分布的率或百分比的资料。一般认为等总体率较小如<30%时或较大(如>70%时),偏离正态较为明显,通过样本率的平方根反正玄变换,可使资料接近正态分布,达到方差齐性的要求。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)