刷环氧树脂套什么清单和定额

刷环氧树脂套什么清单和定额,第1张

你好,环氧树脂地面套的底漆套用环氧打底料,中涂套用环氧胶泥,厚度按比例增减,面涂套用环氧玻璃钢中面漆实际是刮一道,子目套用两道。环氧树脂地面套每平方米150元。 以上价格来源于网络,仅供参考。

环氧树脂是指含有两个或多个环氧基团的树脂的总称。

环氧树脂做胶衣用的话 初始粘度不宜太大, 个人认为E44不是最理想的选择 粘度偏高了 表面质量不易保证 固化剂这块 考虑到E44的脆性 如果没有其他组分增韧的话 可以使用聚酰胺或者593固化 593可能工艺性上还要更方便些。

环氧树脂是指含有两个或多个环氧基团的树脂的总称。到为止,除各种二酚基丙烷(双酚A)环氧树脂外,脂环族环氧树脂品种也不断增加。这类环氧树脂不但品种多,而且大多数具有特殊的性能,如低粘度、高强度,高弹性模量、高延伸率及较高的热稳定性等。因此在军工及民用上得到了重要的应用。在我国,坏氧树脂是1958年开始试制生产的。坏氧树脂的生产已遍布全国,产量逐年增加。在品种方面,双酚A型环氧树脂已有十多种不同分子量的品种投入生产。另外一些特殊性能坏氧树脂,如甘油环氧树脂、有机钛环氧树脂、脂环族环氧树脂也相继投产[1]

环氧树脂具有下列优点:

(1)粘接力强,由于树脂结构中含有羟基及环氧基等极性基团,使得环氧树脂分子与相邻物体表面之间产生较大吸附力,因此在热固性树脂中,粘接力比较高。

(2)固化收缩小,环氧树脂的固化收缩率为1—6%,而聚酯树脂为7—10%,因此制品的尺寸稳定性相对地比较高,其蠕变性能也比聚酯及酚醛要低。

(3)电绝缘性及耐化学腐蚀性能好。

(4)环氧树脂比较稳定,可以保存比较长的时期,一般贮存期可在六个月以上。

其缺点是:(1)成本比聚酯树脂要高。

(2)粘度比较大(指双酚A型),手糊时不如不饱和聚酯树脂方便,一般情况下不能喷射成型。为了提高环氧树脂性能,有人曾对树脂的性能与结构之间的关系作了探讨。一般认为,由C—C键组成的分子主链,由于其分子间力较弱,因此具有较大的柔韧性、较高的延伸率和较低的热变形温度。若把氧原子引入到分子主链中,则可导致树脂软化点的提高和亲水性的增加。若在分子主链中引入酰胺键十NHCO+,则由于产生氢键也可使树脂的软化点急刚提高和刚性增加,此外在分子主链中引入芳环或脂环,一般地说,也可以使树脂的软化点提高。增加环氧树脂活性官能团数目能增加固化后的交联密度,对提高力学性能及耐温性都有利。但这一类树脂往往粘度比较大,会给使用及操作带来困难。为了降低环氧树脂粘度及提高耐温性,采用以季戊四醇等原料合成新的环氧树脂,这类树脂粘度比较低,为400—1500厘泊,是水溶性的,含氯量很低(<0.5%),其浇铸体有较高的热变形温度。在玻璃钢方面用的环氧树脂,主要有双酚A型环氧树脂及脂环族环氧树脂两大类。1.双酚A型环氧树脂

系由双酚A及环氧氯丙烷在氢氧化钠溶液作催化剂下缩聚而成的线型高聚物,其反应如下

手糊玻璃钢用的双酚A型环氧树脂,主要为低分子量环氧树脂,平均分子量在300—700之间,软化点在30'0以下。常用几种牌号的环氧树脂性能指标列于表3—10。通常是利用过醋酸使烯类环氧化而得。它的环氧基连接在脂环上,结构紧密,可提高耐热性,而且这类树脂不带苯核,因此耐紫外线性能也比较好。常用的R—122即6207

及300*400环氧树脂(2,3—环氧坏成基醚树脂)等都属脂

3.自熄性环氧树脂容易燃烧,在电子、航空、宇航、船舶等部门的应用受到很大限制。近几年来,我国有关单位,例如浙江化工研究所已试制成功了四溴双酚A—缩水甘油醚型环氧树脂(以下简称溴化环氧,牌号Ex—25,另外也曾试制过氯化环氧树脂。经试用,溴化环氧有较好的自熄效果,当它与少量的三氧化二锑配合使用时,有更好的自熄效果。溴化环氧Ex—25,其环氧值为0.32,挥发份<1%,含溴量为24—26%。它是由四溴双酚A与环氧氯丙烷进行缩聚而成。使用溴化环氧树脂,普遍感到粘度比较大,在使用中可加入稀释剂50l,其配比如下

Ex—25溴化环氧与普通环氧618*可以混合使用。当两者的重量比即Ex—25/6184>1时,可以达到自熄的效果。其玻璃钢的弯曲性能在60~0下可保留80%以上。但在70'0以上,则弯曲强度保留率明显下降。3.Ex—25溴化环氧与300*,400*环氧混合使用,并用间苯二甲胺作固化剂,可室温固化。其玻璃钢弯曲强度在80~0可保留80%以上。

环氧树脂的固化,一般有三种反应方式:

1.环氧基之间直接键合,

2,环氧基同芳香族羟基或脂肪族羟基键合,

3,通过各种基团同固化剂交联。在玻璃钢上应用,大多数是用胺类或酸酐类固化剂进行固化交联。环氧树脂固化剂的用量,如用胺类固化剂,可根据环氧值及胺的分子量计算:胺的用量=—1祟囊差豢弓义厂X环氧值但当用三乙醇胺等叔胺类时,不能用此式计算。当用酸酐固化剂时,则酸酐用量=kX酸酐分子量X环氧值其中k=0.8~1

环氧树脂的固化剂品种很多,一般分为三大类:

胺类酸酐类及其它类

1.胺类

胺类固化剂是环氧树脂广泛使用的一种固化剂,它可分为脂肪胺及芳香胺两大类,前者的品种与性能列于表3—12。胺类固化剂必须放在密闭的容器内,用后应把盖子盖紧。因为它对水分很敏感,容易吸潮,影响质量。

已采用很多方法来改进胺类固化剂的工艺性能。主要是利用胺和环氧乙烷、环氧丙烷、丙烯腈和醛类生成的加成物。由于这些加成物具有较高的分子量,所以挥发性较低,这样相对地把毒性减少,如后来生产的卢—羟乙基乙二胺NH:C。H:—NHC2H,OH便属于这一类。它是乙二胺与坏氧乙烷的加成物,在室温下呈淡黄色粘性液体,一般用量是16—18%。在手糊玻璃钢方面所使用的一例配方列于表3—13

由于二乙烯三胺毒性较大,已改用苯二甲胺,共配比列于表3—14。在胺类固化剂中,芳香胺也是常用的,例如间苯二胺。它是

一种五色结晶体,分子量108,熔点62'G,易吸潮、氧化,使色泽加深,具有四个活性氢,在通用低分子量环氧树脂中,化学计算用量为15%。使用时一般是将固体的间苯二胺加热至65'0,同时把树脂也预热到同样温度,将二者混合均匀备用。由于间苯二胺易升华,常使人的皮肤及衣服染上黄色,同时毒性也较大。用它作环氧树脂固化剂的树脂浇铸体,有较大耐热性及较高的弹性模量,女口表3—15所示。

由于间苯二胺的污染性比较大,原先用的脂肪胺毒性也较大,因此相继对间苯二胺及一些脂肪胺进行了改性,使毒性有所降低。河北树脂厂曾先后试制了几种改性的固化剂,例如:(1)590固化剂,它是由间苯二胺经部分与坏氧丙烷苯基醚缩合而得的一种衍生物,外观是黄至棕黑色粘稠液体,软化点在20*0以下,一般用量在15—20%之间(占树脂的重量百分比,下同),可以在较低温度下长期固化。如在40'0下经48小时,也可以在120'0下经8小时固化。

(2)591固化剂,它由二乙烯三胺与丙烯腈反应经氰乙基化后的产物,分子式为NH:C:H:NHC:H,NHC:H,CN,是一种浅黄色液体,分子量156,一般用量是20—25%,固化条件是80度2小时。

(3)593固化剂,它是由二乙烯三胺和环氧丙烷丁基醚在一定温度下加成反应而得,在室温下是淡黄色粘性透明液体。其分子式为NH2C2H‘NHCH:CHCH。OC,H。,比重为0.985/25。O,IOH

粘度为100—150厘泊/25。0,一般使用量是23—25%,总胺值是600—700,蒸气压在25。0时为2.4X10—‘毫米汞柱。

4)594固化剂,它是黄色至褐色树脂状液体,胺值为80—130,是胺基硼烷型化合物,作环氧树脂潜性固化剂。与环氧树脂混合后,可存放3个月左右。每100克634环氧树脂约用594固化剂15—70g。胺类固化剂的品种是繁多的,如改性的芳族胺、芳族多元胺、叔胺盐,不一一例举。上述几种胺类改性的固化剂比原来的胺类有所改进。其中以593固化剂应用较广,由于593固化剂在结构中具有较多的氮原子及活性氢,同时还有对活性发生影响的醚键,所以能室温固化,固化速度与二乙烯三胺相近,但放热较缓和,使用寿命约半小时,593固化剂的结构呈线型长链,与环氧树脂固化后,具有很好的弹性,且由于分子链长、沸点高、蒸气压低,逸发至空气中的浓度较小,因此毒性也较小,使用面较广。其一般的配方及性能如下:配方634环氧树脂593固化剂SiO:填料A1:O,填料性能压缩强度拉伸强度弯曲强度恰贝(Charpy)冲击强度硬度(布氏)’

2.酸酐类100g23g100g50g1266公斤/厘米’384公斤/厘米。863公斤/厘米’6,2公斤·厘米/厘米。27,8用酸酐固化的坏氧树脂其高温稳定性一般优于胺类固化剂固化的环氧树脂,其物理性能和电学性能都很好。大多数酸酐固化需要在150~C以上的较高温度,因此限制了它在手糊工艺上的应用。酸酐除用作双酚A环氧树脂的固化剂外,也是脂环族环氧树脂固化剂的主要类型。酸酐类固化剂一般可分为线型脂肪族酸酐、脂环族酸酐及芳香族酸酐三大类。(1)脂肪族多元酸酐主要是含有内酸酐的羧基末端的聚合物,这些聚合物可以提供两个或两个以上的官能团起反应,因此,适宜作固化剂,一般广气具有下列通式:HO十OC(CH真)。COO斗。H。通常以聚癸二酸乙』(PSPA)为代表,其熔点约80~0,固化后产物柔韧性较好,延伸率可达80%。(2)脂环族酸酐从发展趋势看,这一类酸酐在环氧树脂方面将会用得较多。其中有不少品种是液体,这样可以降低环氧树脂的粘度,便于室温操作。例如:

a.十二碳烯基丁二酸酐在室温下是一种淡黄色低粘度液体(300厘泊),它分子结构中的长脂肪链能降低固化体系的脆性。

b.甲基环戌二烯的顺丁烯二酸酐加成物(NMA)在一般情况下为固体,加入士%磷酸,能使之成为熔点低于12'C的淡黄色液体,它与环氧树脂的混合体系中可加入叔胺促进剂,调节树脂体系的粘度。DMP—30,学名为三[二甲氨基甲基]酚是比较活泼的促进剂。禾津津东化工厂生产的70酸酐,基本属此类型,一般用作环氧灌浆材料的固化剂。用于一般环氧树脂的配方为:

6101环氧树脂 100克

70酸酐 5 8克

硅微粉(600目) 40克

二氧化钛 40克

594促进剂 2克

其性能是

马丁耐热 118'0

冲击强度 25.8公斤/厘米。

弯曲强度 1013公斤/厘米。

热失重(100小时) 0.27%

250小时) 0.34%

表面电阻 3.8X105欧姆

c.甲基四氢化邻苯二甲酸酐(MTHPA)也是一种低粘度液体(25'0时60厘泊),环氧树脂固化后耐热性较高,热变形温度为155~C。它的电性能和耐化学性能与以NMA固化的树脂相似。d.六氢邻苯二甲酸酐(HHPA)是一种蜡状固体,分子量为154,熔点为35'0,与双酚A环氧树脂混合粘度比较低,适用期较长。和聚丙烯基缩水甘油醚(PAGE)一起使用,并在加有6Phr的吡啶作助固化剂情况下,可以室温固化。

(3)芳香族酸酐芳香族的一元和二元酸酐都可以用作环氧树脂固化剂。邻苯二甲酸酐简称苯酐,是一种白色结晶体,分子量为148,熔点12800。过去在玻璃钢方面使用,但在室温下环氧树脂与苯酐的混合物粘度较大,当冷到60'0时苯酐析出,而且在温度高到130'0时升华,给操作带来不便,正被液体酸酐所取代。为了提高环氧树脂的耐热性,使用偏苯三甲酸酐(TMA)

为了使环氧树脂体系具有自熄及耐火焰性,可以用氯代和溴代的酸酐。如四溴或四氯邻苯二甲酸酐,一氯苯二甲酸酐和二氯顺丁烯二酸酐等(详见溴化环氧树脂节)。

3,其它类型(主)咪唑咪唑及其衍生物是较广泛使用的一种固化剂,它的优点是毒性小、配料容易、适用期长、粘度小、不着色、固化周期短、固化制品的电学性能和力学性能优良。其缺点是价格较贵。咪唑及其衍生物适用于双酚A坏氧树脂,不适用于脂环族环氧树,脂。几种咪唑的性能列于表3-16。咪唑类固化荆的物理性能表3—16

2一乙基4一甲基咪唑是一种低熔点固体,稍受热即熔融,可以和环氧树脂混溶,纯度一般在90—95%之间。(2)高分子类固化剂这一类固化剂在湿法手糊工艺中很少应用。主要为酚醛树脂,它可以与双酚A环氧树脂分别以1e1或4:6等比率混合,加入溶剂后,浸渍玻璃布,然后烘干,即可模压或卷管,广泛用于干祛成型工艺。

另一类为胺值在200—300的聚酰胺树脂。这一类广泛作为胶粘剂用,可以改善环氧树脂的脆性(市售的650t>与651~1]U属此类)。3—3—辱增塑剂及稀释剂1.增塑剂(土)增塑剂的作用及分类双酚A环氧树脂,经加入固化剂后,交联固化后的产物韧性往往较差。为了增加环氧树脂的韧性,可加入一些增塑剂。一般可分为两类,即活性增塑剂与非活性增塑剂(也叫增韧剂)。某些非活性增塑剂不易与环氧树脂混溶,在固化的过程中,有从体系中析出的倾向。而且,固化体系的刚性与耐热性有所降低。而活性增塑剂则能与环氧树脂起反应,成为交联体系中的一个组成部分,可避免上述缺点。(2)非活性增塑剂这一类增塑剂不带有活性基团,不能参与环氧树脂的固化反应。加入的主要目的是降低树脂粘度,同时可改善树脂固化体系的脆性。一般用量为树脂重量的5—20%。常用的非活性增塑剂的性能列于表3—17

活性增塑剂含有活性基团,直接参与环氧树脂的固化反应,成为交联体系中的一个组成部分,从而能在很大程度上改善环氧树脂的脆性,提高树脂的冲击强度和延伸率。这一类增塑剂包括聚酰胺树脂,聚硫橡胶,不饱和聚酯等等。

2.稀释剂

(1)稀释剂的作用及分类环氧树脂具有高的粘接性,但在室温下,粘度比较大,不利于手糊操作。为了克服这一缺点,常在使用过程中加入一定量的稀释剂以增加环氧树脂对玻璃纤维及其织物的浸润能力,改善成型工艺性能,同时可以增加填料的用量。稀释剂可分为两类:一类是端基含有活性基团(环氧基团)、能参与固化反应的活性稀释剂,如甘油环氧树脂、环氧丙烷丁基醚等,另一类是端基不含有活性基团、不参加固化反应的非活性稀释剂,如丙酮等。

(2)非活性稀释剂非活性稀释剂本身不参与环氧树脂的固化反应,仅达到降低粘度的目的,一般加入量为树脂重量的5—15%。在树脂固化时,大部分逸出,从而增加了树脂的收缩率,降低力学性能及热变形温度,甚至也影响树脂的电性能,因此,应尽可能不使用非活性稀释剂。常用的非活性稀释剂列于表3—18。

(3)活性稀释剂!活性稀释剂都具有环氧基,能参与环氧树脂的固化反应,所以对树脂固化后的性能影响较小,有时还能起着增韧的作用。活性稀释剂一般都有毒,在使用过程中必须注意。表3—19列出了常用的活性稀释剂的性能。}4辅助材料3—辱—]胶衣树0旨玻璃钢击U品的耐久性很大程度上取决于它的表面情况,应该尽可能地不使玻璃纤维外露,以防介质侵蚀。为此,在玻璃钢的

外表面特制成一层树脂含量很高的胶衣层,这一层树脂称为胶衣树脂。胶衣层的厚度一般为0.25—0.4毫米。如果胶衣太薄,胶衣下面的玻璃纤维会暴露出来,达不到美观及保护作用,但太厚就容易产生裂纹,耐冲击性差,特别是受不住从制品反面方向来的冲击。

模具是玻璃钢手糊成型工序中的主要装备。合理选用模具的结构形式及其材料,对玻璃钢制品质量和成本关系很大。采用何种模具主要根据制品的使用情况,以及所选树脂的固化制度等。设计和制造模具时,要考虑模具在使用期间能保持合乎要求的尺寸、制造容易、铺陈方便、脱模容易和造价低廉。模具设计和制造方法牵涉的范围很广,本章只是列出和叙述一些手糊成型基本类型的模具。5—'—]模具设计的基本原则手糊成型的模具,要求模具表面光滑,密实、无孔隙、无裂缝和无凹陷或其它不规则处,因这些缺陷会影响制品质量。模具设计和制品成型条件的关系十分密切,模具设计的每一项内容都必须联系制品制造过程进行设计,既要体现制品的结构要求,又要考虑容易脱模和对制品无损伤,如在模具中放“顶出杆,/,也可在模具中设计气孔或水孔,允许注入压缩空气或高压水来帮助脱模。对成型表面积很大的制品可使用旋转式或倾斜支撑模具,在大型模具中,如糊制船壳时,可在模具上面伸出脚手架,便于成型操作。如果制品尺寸不允许整块地脱出模具,而生产数量又多时,可采用拆卸式模具,如只需生产为数不多的制品,为降低成本一般不采用可拆卸式模具,而采用石膏模或蜡模等一次使用的模具。简单模具可由几个零件组装起来。加压固化的模具,应具有足够的强度和刚度,以避免过大变形而影响制品的型面精度。对加热固化的模具要能够完好地经受固化温度的作用,在该温度下无变形或翘曲。因此,在设计模具之前,必须充分分析和研究制品设计的要求,以便使制品设计和模具设计二者的合理性相互协调和统一。对一些形状复杂的制品,或用金属材料难于制造的模具,或为了缩短模具的制造周期,往往采用翻造玻璃钢模具代替金属模具。用玻璃钢翻造对合模具,一般需先用木材制造标准的仿型模具做母模,再根据母模翻制过渡模,用母模和过渡模成型出所需要的模具。翻造单模也可用实物或直接用仿型模来翻制所需的模具。翻造的模具通常采用框架来保证关键尺寸,提高翻模的刚度。合适的框架是随零件的复杂性与尺寸而变化的。翻模时同时要考虑母模和过渡模材料所引起的变形以及分型定位、结合部位的妥善处理。用这种制模法可以制造同形状的多体模具。5—'—2模具的结构形式·适用于玻璃钢手糊成型的模具结构形式一般分为:单模和敞口式对模,单模又可分为阳模和阴模两种

阴模

阴模的工作面是向内凹陷,用阴模生产的制品外表面光滑、尺寸较准确。但对凹陷深的制品,用阴模工艺则操作不便,排气困难,质量不易控制。阴模常用于生产外表面要求光滑和尺寸精度较高的制品。

阳模

阳模的工作面是凸出的。用阳模生产的制品内表面光滑、尺寸准确,操作方便,质量容易控制,便于通风处理,在手糊成型工艺中除制品有特殊要求外,一般均选用阳模成型。

敞口式对模

敞口式对模是由阳模和阴模两部分组成,带有溢料飞边的陷槽,通过定位销定位。如果制品的外型、厚度和表面都要求严格,用这种模具较为妥当。但在成型过程中要上下翻动,故不适用于大型制品。

4.组合式模具由于某些玻璃钢制品的结构复杂或者为了脱模方便,常将模具分戍几部分制造,然后拼装而成,如各种活络模、抽心模、石蜡金属组合模具等。对于这种模具的形式是靠模具设计人员的技巧。5—2模具材料的选择模具的质量除取决于模具结构设计外,最根本的问题是制模材料的基本性能是否和模具的制造要求与使用条件相适应。因此,根据模具的结构和使用情况,合理选用制模材料,是保证制品质量和降低成本的关键之一。用于制作模具的材料很多,选择材料时应考虑模具的使用寿命,对于大批量生产和制造尺寸精度要求较高的制品,采用钢材和铝材制造模具,对于短期使用和大型制品使用金属模具就不经济,可以选用非金属模具材料。模具材料应不受树脂和辅助材料的侵蚀,不影响树脂的固化,能经受一定温度范围的变化,价格便宜,来源方便,制造容易。

金属模具材料要有良好的加工性和耐磨性,不应有粗糙的杂质和气孔等。常用品种有铸铁、铸铝、铸铝合金、碳素钢等。对有耐腐蚀要求的金属模具,可选用耐腐蚀的金属材料或在耐腐蚀性较弱的金属模具表面覆盖耐腐蚀性较强的金属或非金属保护层

钢模表面可进行镀铬、镀镍处理。黄铜对聚酯树脂固化有阻聚作用,不宜用作聚酯玻璃钢的模具材料。金属材料制造的模具,可以加温加压,使用寿命长,光洁度奸,表面精度高,不易变形,但加工复杂,制造周期长,造价贵,主要适用于批量生产或精度要求较高的中、小型玻璃钢制品。5—2—2司F金属材料非金属材料广泛用于制造玻璃钢模具,因为利用非金属材料制造模具,加工方便,价格低廉,可缩短模具生产周期,降低模具成本。常用的非金属材料有木材,石膏,混凝土、增强塑料、石蜡等。

1.木材供制作模具用的木材要求质地均匀,无节、变形小等,最好使用柚木、银杏木、红松等硬木,选用何种木材应根据产品的形状和使用情况来决定。在制造模具前木材都应预先制成板条进行干燥,使其含水量不大于10%,以减少模具的变形和裂纹。模具表面需用腻子填补孔隙,然后用细砂纸打光,再用虫胶密封处理,使表面光滑,防止树脂向内部渗透,造成脱模困难,同时防止模具内部的水分挥发,影响制品固化和表面质量。木质模具加工容易,比较轻便,可短期多次使用,但容易变形和损坏,表面需经维修,适用于试制结构形状复杂和大尺寸的室温固化的制品。

2.石膏石膏模具,常用半水石膏铸造而成,制造石膏模具时,可用木材、砖等制成构架,再在构架上糊一层石膏层。为了提高模具的刚度一般在石膏中加人水泥(石膏,水泥=7:3)进行铸造。这种模具的优点是制造方便,费用少,但不耐用、怕冲击,易变形,使用前要预先干燥,其表面也需进行加工和封孔处理。适用于一些形状简单的大型制品及几何形状较复杂的小型制品的成型。

3.混凝土混凝土模具塑造较方便,成本低,刚性好,不易变形,可长期多次使用,其表面需用水磨石使其光滑,然后用腻子封孔,砂光,再刷虫胶液或油漆才可使用。但型面校正较困难,适用于线型光滑、规则、形状不复杂的大,中型制品。

4增强塑料模具可以根据模具使用的条件选材制造。常用的有玻璃钢和用矿物填充的环氧树脂。玻璃钢模具是用玻璃纤维及其织物增强热固性环氧树脂或聚酯树脂制造的。矿物填充的珏氧树脂浇注模具,通常使用的是在双酚A型环氧树脂或脂环族环氧树脂的配方中加入一倍左右重量的填料塑造的。填料可减少环氧树脂用量降低成本、降低线膨胀系数和收缩,增加导热性能、提高硬度和强度。常用的矿物填料有铝粉,氧化铝、石英粉,碳化硅、钢丝绒等。增强塑料制造模具方便,可以制成比较复杂的形状,线膨胀和收缩小,精度较高,表面光洁度好,比较耐久,化学稳定性好,耐腐蚀性强,制品可以加温加压固化成型。这类模具适用于表面质量要求较高、形状复杂的中,小型玻璃钢制品。

石蜡

石蜡模需在母模上翻制,主要用来成型形状复杂和脱模困难的小型异形制品,如对于某些由许多异形断面构成的结构物,可用蜡模法成型,制品固化后加热使蜡从制品的预留口流淌出来。为了减小石蜡模具的收缩变形,提高模具的刚度,可在石蜡中加入5%左右的硬脂酸。石蜡模具制造方便,不需涂脱模剂,材料可以反复回收使用,成本低,但由于石蜡熔点低,易变形,制品的精度不高。

6.红砂制造少量大型制件,也有使用红砂制造模具的。在制模时,先用砖等搭成雏形,再用红砂糊上,为了提高红砂的粘结性,一般在红砂中加入少量的粘结剂(如聚乙烯醇溶液),最后在红砂模上涂上油漆以封闭毛细孔。用红砂制造模具周期短,加工工艺最简单,成本很低,但是不耐久,易碎。只适用于形状简单,数量少的大型玻璃钢制品。

脱模剂为防止制品粘着模具,便于脱模,在玻璃钢制品成型之前,在模具工作面上涂敷的一层物质叫脱模剂。凡是与合成树脂粘结力小的非极性或极性微弱的一类物质,都可以作玻璃钢脱模剂用。但脱模剂还应具有下列条件:不腐蚀模具,不影响树脂固化,成膜均匀,光滑,成膜时间短,使用方便,价格便宜。选择脱模剂时,应考虑模具材料、树脂种类和固化温度,制品的制造周期与脱模剂的敷涂时间等因素。脱模剂的种类很多,一般分为片状、溶液型、油蜡类三种。

片状脱模剂·属于此类的有:玻璃纸、涤纶薄膜、聚氯乙烯薄膜,聚乙烯薄膜、聚酰亚胺薄膜,聚四氟乙烯薄膜等。使用时一般用油膏把薄膜粘贴在模具工作表面。粘贴时要防止薄膜起皱和漏贴。此类脱模剂使用较方便,脱模效果好,但薄膜形变性小,使用有一定的局限性,在复杂型面上不易贴平,聚氯乙烯薄膜和聚乙烯薄膜不适用于聚酯玻璃钢的脱模,因聚酯树脂中的苯乙烯易把这类薄膜溶胀。对于高温固化的玻璃钢制品要用聚四氟乙烯薄膜、聚酰亚胺薄膜

材料学是研究材料组成、结构、工艺、性质和使用效能之间的相互关系的学科,为材料设计、制造、工艺优化和合理使用提供科学依据。下文是我为大家蒐集整理的的内容,欢迎大家阅读参考!

篇1

浅析奈米二氧化矽改性环氧树脂复合材料的效能

随着资讯产业的飞速发展, 人类社会正稳步朝着高度资讯化的方向发展,资讯处理与资讯通讯正构成高度资讯化科学技术领域发展中的两大技术支柱.以高速计算机、示波器、IC测试仪器为主体的资讯处理技术追求资讯处理的高速化、容量的增大化和体积的小型化以手机、卫星通讯及蓝芽技术等为代表的资讯通讯技术追求多通道数、高效能化和多功能化,使得使用频率不断提高,进入高频甚至超高频领域.在高频电路中,由于基板介电常数越低,讯号传播得越快基板的介电常数越小,损耗因数越小,讯号传播的衰减越小,因此,要实现高速传输、低能量损耗与小的传输延时,则对基板材料提出了更高的要求,即要求基板材料为低ε、低tanδ.

此外,高的耐热性,低的吸水性和高的尺寸稳定性也是高频电路对基板材料的基本要求.传统的基板材料***FR4***所用的基体树脂主要为环氧树脂,因其成本低、工艺成熟而在印刷电路板中大量使用但作为高频电路基板材料,却暴露出介电效能低劣、耐热性不佳、热膨胀率偏高、耐溼性差等缺陷.因此开发适合高频电路基板材料用的树脂体系是印刷电路板行业目前研究的一个重要方向,而对EP进行改性并借助EP较为成熟的生产和加工工艺研究、开发和制备新型的树脂体系,是制备高效能电路基板的一条非常经济有效的途径[3-5] .

研究表明,无机奈米粒子弥散分布的树脂基体材料,由于奈米粒子具有的表面特性和晶体结构使基体材料显示出一系列优异的效能,其中奈米SiO2 改性树脂基体具有很多优异的效能[8-10],但奈米SiO2表面存在大量的羟基使其表现为亲水性、易团聚,贮存稳定性差等缺点.因此奈米颗粒在树脂中的均匀分散是制备高效能奈米颗粒弥散分布有机树脂的一个重要环节.

本文采用矽烷偶联剂KH570改性奈米SiO2粉体,通过共混法制备了高效能SiO2EP树脂复合材料,并对其微观结构、热稳定性和介电效能进行研究.

1、实验部分

1.1原料

奈米SiO2质量分数≥99.5%,粒径15 nm,杭州万景新材料有限公司苯***A.R.***、二甲苯***A.R.***、无水乙醇、H2O2 ***30 %,A.R.***,γ2***甲基丙烯酰氧***丙基三甲氧基矽烷***A.R. KH570***、环氧树脂***E44,6101******湖南三雄化工厂***、固化剂聚酰亚胺***低分子650******湖南三雄化工厂***.

1.2SiO2改性环氧树脂复合材料的制备

参考文献[11],采用 γ2***甲基丙烯酰氧***丙基三甲氧基矽烷***KH570***对奈米SiO2进行表面改性处理得到亲油性奈米SiO2粉体.

SiO2改性环氧树脂复合材料的制备工艺如下***以2% SiO2EP为例***:取2 g亲油性SiO2粉体,超声分散于80 mL二甲苯中,然后加入49 g环氧树脂,搅拌均匀后再加入49 g的聚酰胺固化剂,超声分散搅拌均匀,最后将混合体系倾入铝制模具中,放置于烘箱中先于120 ℃预固化2 h,再升温至150 ℃固化3 h,最后于180 ℃固化1 h得最终试样. 为对比不同试样的效能,采用相同工艺制备了未新增奈米SiO2的EP.不同组成的试样编号如表1所示.

1.3效能测试

采用傅立叶变换红外光谱***FTIR,Avatar360,Nicolet***研究改性奈米SiO2前后,不同试样中化学键的变化,判断可能发生的反应.操作条件:采用KBr压片法制样,测量的波长范围为***4 000~400*** cm-1.

采用扫描电子显微镜***SEM,JSM6700F,Jeol***表征微观形貌,观察奈米颗粒在复合材料中的分散情况.

用STA449C综合热分析仪研究试样的热稳定性.操作条件:样品质量为25~35 mg,Ar流量为50 mL?min-1,升温速率为10 ℃?min-1,温度变化范围为***0~800*** ℃.

介电常数是指介质在外加电场时会产生感应电荷而削弱电场,在相同的原电场中某一介质中的电容率与真空中的电容率的比值. 介电损耗是电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象.SiO2改性环氧树脂复合材料的介电常数和介电损耗采用美国安捷伦公司生产的Agilent 4991A高频阻抗分析仪测试,测试频率为1 M~1 G,测试夹具为美国安捷伦公司生产的Agilent16453A介电效能测试夹具.

2、结果与讨论

2.1FTIR分析

图1为3种试样的红外图谱.对改性奈米SiO2而言,位于1 103 cm-1左右的一个宽强峰及812 cm-1附近的一个尖峰属于Si-O-Si键的对称振动峰***νSi-O-Si*** .波数为1 395 cm- 1 的吸收峰属于νSiO-H的伸缩振动峰波数为1 637 cm-1 处的吸收峰属于νC = C 的伸缩振动峰,波数为1 606 cm-1 处的吸收峰归属于νC-C的收缩振动峰,这两种化学键均来自于矽烷偶联剂KH570,从这几个吸收峰来看,矽烷偶联剂已经成功地连线在SiO2表面[11-12].同时由于改性奈米SiO2中仍存在Si-OH键振动峰,表明偶联剂在奈米SiO2表面的反应进行得并不完全,偶联剂用量对SiO2改性效果的影响有待进一步研究.

由于聚酰亚胺固化EP材料的官能团较多,本文重点分析新增改性SiO2后,相应官能团的变化.对比新增改性奈米SiO2前后EP的红外吸收,可知奈米SiO2在1 395 cm- 1处的峰消失,同时EP材料中出现于1 628 cm-1处的δCO-H和1 405 cm-1处的δN-H的强度降低甚至消失,表明矽烷偶联剂和改性奈米SiO2与EP树脂材料发生了化学反应,导致δCO-H和δN-H吸收峰强度降低或者消失.

波数/cm-1

2.2奈米SiO2新增量对EP热稳定效能的影响

图2为不同样品在Ar气氛下的热重***TG***曲线和微分热重***DTG***曲线.从图2***a***所示TG曲线可以看出,不同组成的试样在Ar气氛中的热失重过程相似,在300~500 ℃,在相同的温度下,随SiO2含量的增加,失重率显著升高而当失重率相同时,随SiO2含量的增加,复合树脂对应的温度升高,表明其热稳定性增加.表2给出了不同试样一定失重率对应的温度.

从图2***b***所示DTG曲线可以看出,0#试样有两个峰值,这表明EP基体的分解可大致分为两个步骤,这两个失重峰对应的分别是环氧树脂基体的热分解和裂解残碳的氧化[13-14].随着新增量的增加,第一个峰值逐渐变平缓直到最后消失,而失重速率最大时对应的峰值温度***见表2***则逐渐升高,这也表明随新增量的增加,偶联剂的官能团和改性奈米SiO2表面残留的Si-OH与基体树脂的官能团发生了化学反应,从而提高了树脂基体的“牢固度”[15].新增量越多,“牢固度”增加的程度越大,从而导致基体材料的热稳定性逐渐提高.

由于环氧树脂及其固化剂含有较多的氧,因此尽管在惰性气氛中进行热分解研究,但其裂解后的残炭量几乎完全消失,残余质量与新增在其中的SiO2量相一致[14].

2.3奈米SiO2新增量对EP微观形貌的影响

图3为新增不同奈米SiO2颗粒的SiO2/EP复合材料的微观形貌图谱.从图3***a***中可以看出,未新增SiO2的试样断面较为粗糙从图3***b***~***e***可以看出,随SiO2新增量的增加,其在EP中的分布由分散均匀,团聚少***图3***b*** 和3***c******,逐步改为团聚明显,分散均匀性差***图3***d*** 和3***e******.当新增量为4%时,奈米SiO2均匀地分散在EP基体中,粒径约为30 nm,对比原始SiO2尺寸,奈米颗粒还存在微弱的团聚现象.随新增量的增加,奈米SiO2团聚现象明显增加,当新增量增加到16%时,奈米颗粒出现严重的团聚现象,这将影响其介电效能.这种团聚一方面是由于奈米颗粒有很高的比表面积,同时由于偶联剂与奈米SiO2颗粒表面Si-OH反应得并不完全,导致奈米颗粒表面仍存在Si-OH,这些官能团彼此之间可以发生缩合反应导致颗粒团聚.

2.4奈米SiO2新增量对EP基体介电效能的影响

2.4.1奈米SiO2新增量对EP介电常数的影响

图4为不同试样的介电常数与测试频率的关系曲线图.从图4可以看出,5组试样的介电常数均随着频率的升高呈下降趋势.同时随着奈米SiO2新增量的增加,试样的介电常数呈先降低后升高的趋势.当新增量为4%时,试样的介电常数具有最低值.

log***f/Hz***

析认为,当奈米SiO2的新增量小于4%时,奈米SiO2新增到树脂基体后,形成了“ 核壳过渡层”结构,以“核”作为交联点使得复合材料的交联度提高,其极性基团取向活动变得困难, 因而复合材料的介电常数下降.而当奈米SiO2的新增量大于4%时,奈米SiO2本身介电效能较高的影响超过了其对树脂基体极性基团的“束缚”作用而产生了介电效能降低效应,这就导致复合材料介电常数的增加.

2.4.2奈米SiO2新增量对EP介电损耗的影响

图5为5种试样的介电损耗随频率的变化曲线.从图5可以看出,试样的介电损耗均随测试频率的增加先升高后降低随着奈米SiO2加入量的增多呈现先降低后升高的趋势.同一测试频率下,当奈米SiO2的新增量为4%时,材料的介电损耗最低当奈米SiO2的新增量为6%时,材料的介电损耗开始增加当奈米SiO2的新增量为16%时,材料的介电损耗接近纯EP试样的介电损耗.

分析认为,复合材料的介电损耗取决于环氧树脂极性基团的松弛损耗和极性杂质电导损耗的共同作用.加入奈米SiO2后,一方面改性奈米SiO2表面的官能团可以与聚酰亚胺固化EP中的官能团反应,束缚了树脂基体中极性基团的运动,从而降低了松弛损耗另一方面,改性后的奈米颗粒表面不可避免地存在一些极性基团,这些基团同时增加了电导损耗,复合材料的介电损耗正是这二者共同作用的结果.当奈米SiO2的新增量小于6%时,试样的松弛损耗的降低效果高于电导损耗的增加效果,所以试样的介电损耗均比纯EP的小.而当奈米SiO2的新增量为16%时,奈米SiO2出现明显的团聚现象,这就导致松弛损耗的效果迅速降低,从而导致试样总体的介电损耗接近纯EP试样.

3、结论

利用矽烷偶联剂对奈米SiO2进行表面改性,通过共混法制备了不同奈米SiO2含量的SiO2/EP奈米复合材料,研究了SiO2的新增对复合材料微观结构、耐热性和介电效能的影响.结论如下:

1 *** 当奈米SiO2含量在0~16%时,随着奈米SiO2含量的增加,SiO2/EP奈米复合材料的热稳定性逐渐升高.

2*** SiO2/EP奈米复合材料的介电效能随着测试频率的升高呈下降趋势.同一测试频率下,随着奈米SiO2新增量的增加,试样的介电常数呈先降低后升高趋势.

3***当奈米SiO2含量为4%时,复合材料的综合性能最优.其耐热性较好,介电效能最优***频率为1 GHz时,介电常数为2.86,介电损耗为0.023 53***.

>>>下页带来更多的


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/250691.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-14
下一篇2023-04-14

发表评论

登录后才能评论

评论列表(0条)

    保存