凝胶型离子交换树脂的结构特点

凝胶型离子交换树脂的结构特点,第1张

凝胶树脂的骨架结构呈微孔状。离子交换反应是通过由交联大分子链间距离而形成的孔隙(微孔)扩散到交换基团附近进行的。微孔随交联度增加而变小,随凝胶体的溶胀而变大。树脂处于干燥状态时,孔实际上不存在。凝胶树脂中无物理孔(毛细孔)而仅存在化学孔,是连续无间的产胶结构。凝胶型树脂在聚合的时候,需要加入交联剂,并要控制交联剂数量上的变化,使得在树脂中形成相应的微孔,孔径在0.5~5nm之间。主要是用于吸附水中阴、阳离子,对有机物的吸附能力很弱。易污染老化,比表面积<0.1m/g干树脂。外观呈透明球状颗粒。

凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。离子交换树脂这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waals force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、效率高,所需处理时间缩短。大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。

争光树脂北京办事处给您一个最权威的分析说明(如有疑问或需要可以与我联系010-57180700):

由于制造工艺的不同,离子交换树脂内部形成不同的孔型结构。常见的产品有凝胶型树脂和大孔型树脂。

a)凝胶型树脂。这种树脂是均相高分子凝胶结构,所以统称凝胶型离子交换树脂。在它所形成的球体内部,由单体聚合成的链状大分子在交联剂的链接下,组成了空间结构。这种结构像排布错乱的蜂巢,存在着纵横交错的“巷道”,离子交换基团就分布在巷道的各个部位。由巷道所构成的空隙,并非我们想象的毛细孔,而是化学结构中的空隙,所以称为化学孔或凝胶孔。其孔径的大小与树脂的交联度和膨胀程度有关,交联度越大,孔径就越小。当树脂处于水合状态时,水分子链舒伸,链间距离增大,凝胶孔就扩大;树脂干燥失水时,凝胶孔就缩小。反离子的性质、溶液的浓度及pH值的变化都会引起凝胶孔径的改变。

凝胶孔的特点是孔径极小,平均孔径约1~2nm,而且大小不一,形状不规则。它只能通过直径很小的离子,直径较大的分子通过时,则容易堵塞孔道而影响树脂的交换能力。凝胶型树脂的缺点是抗氧化性和机械强度较差,特别是阴树脂易受有机物的污染。

b)大孔型树脂。这种树脂在制造过程中,由于加入了致孔剂,因而形成大量的毛细孔道,所以称为大孔树脂。在大孔树脂的球体中,高分子的凝胶骨架被毛细孔道分割成非均相凝胶结构,它同时存在着凝胶孔和毛细孔。其中毛细孔的体积一般为0.5mL(孔)/g(树脂)左右,孔径在20~200nm以上,比表面积从几m2/g到几百m2/g。由于这样的结构,大孔型树脂可以使直径较大的分子通行无阻,所以用它去除水中高分子有机物具有良好的效果。

大孔型树脂由于孔隙占据一定的空间,骨架的实体部分就相对减少,离子交换基团含量也相应减少,所以交换能力比凝胶型树脂低。大孔型树脂的吸附能力强,与交换的离子结合较牢固,不容易充分恢复其交换能力。但大孔树脂的抗氧化性能比较好,因为它的交联度较大,大分子不易降解。再者,大孔树脂具有较好的抗有机物污染性能,因为被树脂截留的有机物,易于在再生操作中,从树脂的孔眼中清除出去。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/261657.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-16
下一篇2023-04-16

发表评论

登录后才能评论

评论列表(0条)

    保存