钙钛矿电池薄膜测sem的时候怎么治样才能保证测试的时候不变质?

钙钛矿电池薄膜测sem的时候怎么治样才能保证测试的时候不变质?,第1张

在钙钛矿太阳能电池的生产过程中,钙钛矿薄膜质量的好坏直接影响钙钛矿电池性能的优劣。目前对钙钛矿薄膜质量的检测手段主要有两种,一种是微观检测手段,如利用x射线衍射仪(xrd)表征钙钛矿薄膜的结晶程度;利用扫描电子显微镜(sem)观察钙钛矿薄膜的微观形貌;利用原子力显微镜(afm)测试钙钛矿薄膜表面平整度等,这些微观检测手段不仅测试费用昂贵、制样繁琐、测试时间长,而且很难整合到实际的生产线中,无法满足后续钙钛矿电池组件的批量化生产要求。而另一种检测手段是使用常规光谱检测,如紫外可见漫反射谱(uv-vis)、荧光光谱(pl)等,也因价格昂贵,光路精度要求高,测试耗时等因素,限制了其在生产线中的大规模应用。

另一方面,钙钛矿薄膜的反应程度也会直接影响钙钛矿薄膜的质量,而目前对钙钛矿薄膜反应程度的判断尚未见到有效的方法。无论是溶液法还是气相法制备钙钛矿薄膜,只有当几种前驱体的摩尔量符合化学计量数之比时,钙钛矿薄膜才能充分反应,当其中一种前驱体的量不足时,钙钛矿就会出现反应不充分的情况。以最常见的mapbi3钙钛矿材料为例,它是由mai和pbi2两种前驱体通过化学反应转化而成,当mai前驱体的量不足时,钙钛矿的转化不充分,此时薄膜中会残留较多的pbi2前驱体,使得钙钛矿薄膜在光照下,从正面(入光面为正面,即导电玻璃基底这一面)看去会呈现淡黄色,说明钙钛矿薄膜对可见光的吸收尚不充分。当mai的量逐渐符合化学计量数之比时,mapbi3的反应程度逐渐达到充分状态。在这一过程中,从正面观察钙钛矿薄膜所呈现出来的颜色变化会从淡黄色逐渐变为青绿色,再到淡蓝色,最后到紫色,这也从侧面印证了钙钛矿薄膜对光的吸收逐渐扩展至整个可见光范围。钙钛矿薄膜的这种颜色变化过程恰好为我们提供了一种判断其反应程度的指标。

机器视觉是一种使用机器代替人眼进行检测和判断的工业系统,其通过图像拍摄装置摄取待检测样品的图像信息,并传输至专用的图像处理系统。图像处理系统会将检测样品的颜色、亮度、均匀性等信息转换成数字信号,并与数据库中的标准样品进行比对,从而做出判断和筛选,并将结果反馈给现场工作的设备和检测人员。相比于人工检测与筛选,机器视觉大大提高了样品检测的准确性和生产效率,并在一些不适合人工作业的危险环境中发挥着重要作用。机器视觉的应用越来越广泛。

电荷注入不平衡是制约钙钛矿型发光二极管(PeLEDs)效率的主要问题之一。通过对多空穴传输层的器件结构进行了设计,成功地实现了高效的PeLEDs器件。然而,在一个典型的溶液法制备的PeLEDs中,多层HTL很容易被下一层的油墨重新溶解,这不仅严重恶化了HTLs的电性能,而且影响了顶层钙钛矿薄膜的质量。

来自苏州大学的研究人员针对这一现象, 通过在HTLs和钙钛矿层之间插入一层薄的原子层沉积氧化铝(Al2O3)层,成功的改善了界面接触,从而获得具有增强特性和平衡电荷注入的钙钛矿薄膜。 另外,由于适当的折射率(r),Al2O3层的存在也有利于PeLEDs的出光耦合。结果表明,所制备的绿色PeLEDs具有良好的重复性和17.0%的外量子效率,比不添加Al2O3的器件提高约60%。该工作为提高钙钛矿型光电器件中电荷传输层与钙钛矿之间的界面接触提供了一条很有前途的途径。相关论文以题目为“High Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact”发表在ACS Applied Materials &Interfaces 期刊上。

论文链接:

https://pubs.acs.org/doi/10.1021/acsami.0c07514

金属卤化物钙钛矿由于其独特的光电特性,是一种很有前途的发光二极管材料。在过去的几年里在器件方面取得了重大进展。在典型的PeLEDs中,器件通常由电极、电子传输层(ETL)、发射层(EML)和空穴传输层(HTL)组成。良好的能量水平校准是提高电荷注入效率的关键。切相关,因此迫切需要开发有效的方法来增强电荷传输层与EML之间的界面接触。在这种情况下,需要在钙钛矿薄膜和电荷传输层之间形成一个更可控、质量更高的界面层。在这里,作者开发了一种通过在中间插入原子层沉积处理过的氧化铝层来提高界面质量的方法。得到了很大改善的界面接触,同时也增强了钙钛矿前驱体在其上的润湿性,从而促进了高质量钙钛矿薄膜的形成。

图1.(a)底层再溶解示意图。(b)ITO / TFB / PVK的AFM高度和线扫描。 AFM图像的扫描区域为5μm×5μm。(c)ITO / TFB / PVK / Al2O3的AFM高度和线扫描(n = 50)。 AFM图像的扫描区域为5μm×5μm。

图2.(a)用不同循环Al2O3层覆盖的TFB / PVK的水接触角。(b)TFB / PVK / Al2O3(n = 0、30、50和70)上钙钛矿薄膜的SEM图像和(c)AFM图像。SEM图像的比例尺为200 nm。AFM图像的扫描区域为10μm×10μm。

图3.(a)沉积在TFB / PVK / Al2O3上的钙钛矿薄膜的PL强度(n = 0、30、50和70)。(b)沉积在TFB / PVK / Al2O3上的钙钛矿膜的PL强度与时间的关系(n = 0、30、50和70)。(c)具有不同循环Al2O3层的器件在514 nm波长处的模拟光通量。

图4.(a)具有ITO / TFB / PVK / Al2O3/钙钛矿/ TPBi /LiF / Al结构(n = 50)的器件的截面SEM图像。(b)PeLED器件结构的能量图。(c)具有n = 0、30、50和70的器件的J-V-L曲线。(d)具有或不具有Al2O3(n = 50)层的器件的EQE-J曲线。(e)n = 0、30、50和70的器件的EQE分布。(f)不使用(W / O)或使用Al2O3(n = 50)的器件的工作时间,其亮度衰减。

(文:爱新觉罗星)

2D钙钛矿钝化剂可分为三种类型:A‘X (胺盐,X=卤素) 和A’ (胺分子),A‘2An-1PbnI3n-1 (集成的二维钙钛矿)。

例如丁胺分子钝化:2BA+nMAPbI3→(BA)2(MA)(−1)(Pb)I(3+1)

钝化方法:溶液旋涂、溶液浸泡、真空沉积和机械压制。溶液旋涂应用最广泛,其中铵盐或胺分子的前体溶液直接旋涂在3D钙钛矿薄膜的顶部,从而实现了2D层的原位生长。溶液浸泡是将3D薄膜放置2D溶液中,使得表面成分与溶液发生充分反应。这两种方法易形成不同n值的混合相。真空沉积和机械压制可避免该混合相,且允许形成厚度可控的高纯度相2D钙钛矿层。

要点三钝化机理


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/264975.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-17
下一篇2023-04-17

发表评论

登录后才能评论

评论列表(0条)

    保存