1、溶胶-乳液-凝胶法
溶胶-乳液-凝胶法是在溶胶凝胶法的基础上发展起来的。其主要工艺过程是利用醇铝水解,经过溶胶凝胶过程制备球形氧化铝粉体,整个水解体系比较复杂,其中溶解醇铝的辛醇占50%,乙腈溶剂占40%,分散水的辛醇和丁醇分别占9%和1%,并且用羟丙基纤维素作分散剂,得到了球形度非常好的球形氧化铝粉体。
溶胶-乳液-凝胶法由于采用了有机溶剂及表面活性剂,缺点是不利于氧化铝粉体的分离及干燥。
溶胶-乳液-凝胶法制备球形氧化铝粉体SEM图片
2、滴球法
滴球法是将氧化铝溶胶滴入到油层(通常使用石蜡、矿物油等),靠表面张力的作用形成球形的溶胶颗粒,随后溶胶颗粒在氨水溶液中凝胶化,最后将凝胶颗粒干燥,煅烧形成球形氧化铝的方法。滴球法制备的球形氧化铝主要应用于吸附剂或催化剂载体。
滴球法是对溶胶-乳液-凝胶法在工艺上的进一步改进,其优点是省去了粉体与油性试剂的分离处理。缺点是制备球形氧化铝的粒径较大,
3、均相沉淀法
均相沉淀法是指在Al2(SO4)3或NH4Al(SO4)2均相溶液中,其沉淀过程包括晶核形成、聚集长大、析出。在沉淀剂的作用下,均相溶液中的浓度降低,就会均匀地生成大量的微小晶核,最终形成的细小沉淀颗粒会均匀地分散在整个溶液当中,制备得到球形氧化铝。
需要特别注意的是:球形氧化铝粉体颗粒只有在Al2(SO4)3或NH4Al(SO4)2溶液中能够获得,而不能在Al(NO3)3或AlCl3溶液中得到,可见SO42-对形成球形颗粒起到了至关重要的作用。
均相沉淀法制备球形氧化铝SEM图
均相沉淀法优点是能够制备球形度非常好的氧化铝粉体,形貌均一,粒度分布窄。缺点是该方法局限性大,形貌形成机理尚不明确。
4、模板法
模板法是以球形原料作为过程中控制形态的试剂,产品通常空心或者是核壳结构。主要工艺过程是以聚苯乙烯微球为模板剂,用碳酸功能化的氧化铝纳米粒子包覆,再通过甲苯洗涤,制备了空心氧化铝球体。
模板法是制备空心球体的好方法。缺点是对模板剂的要求较高,制备过程步骤多,不易操作。
空心球形氧化铝的合成原理示意图
5、气溶胶分解法
气溶胶分解通常是以铝醇盐为原料,利用铝醇盐易水解和高温热解的性质,并采用相变的物理手段,将铝醇盐气化,然后与水蒸汽接触水解雾化,再经高温干燥或直接高温热解,从而实现气-液-固或气-固相的转变,最终形成球形氧化铝粉体。气溶胶分解法关键是由雾化部分和反应部分组成的复杂的实验装置。
气溶胶水解法的工艺流程图
6、喷射法
喷射法制备球形氧化铝的实质是在较短的时间内实现相的转变,利用表面张力的作用使产物球形化,根据相转变的特点又可以分为喷雾热解法、喷雾干燥法和喷射熔融法。
(1)喷雾热解法
喷雾热解法是以Al(SO4)3、Al(NO3)3和AlCl3溶液为原料,通过雾化作用形成球形液滴,经过高温热解生成球形氧化铝粉体。该方法热解过程需要900℃,耗能较大。
(2)喷雾干燥法
喷雾干燥法是先将铝盐溶液与氨水反应制成氧化铝溶胶,再将氧化铝溶胶在150-240℃下喷雾干燥,制备得到球形氧化铝粉体。
该方法相比于喷雾热解法法,优点是:可减少能量的消耗。
喷雾干燥法制备球形氧化铝粉体SEM图
(3)喷射熔融法
喷射熔融法是利用等离子焰直接将固体铝粉或氧化铝粉熔融,然后马上做退火处理,通过调节载气成分和直流电弧的功率可以控制球形化程度,并可以制备空心结构。
等离子喷雾熔融法制备球形氧化铝
利用SiC和Al_2O_3纳米粉末在空气中反应烧结制备了氧化铝/0.18~8.72vol%莫来石复合陶瓷。研究了莫来石(3Al_2O_3·2SiO_2)的生长行为,成分组成、微观结构、应力状态以及力学性能和耐磨性能。 运用X射线衍射(XRD)的θ-2θ扫描、外标法和sin~2ψ法分别对样品进行定性、定量相分析和表面残余应力测量采用扫描电子显微镜(SEM)观察了样品的表面形貌、断口形貌和磨损面样品的微观结构利用透射电子显微镜(TEM)进行分析样品的杨氏模量通过共振法测量,样品的断裂强度通过三点弯曲试验测试,采用压痕法测量样品的硬度和断裂韧性,运用纳米硬度计测试了样品的纳米硬度和微观摩擦行为样品的耐磨性通过磨料磨损试验测试。 研究结果表明,SiC颗粒在1400℃以下被氧化成SiO_2,SiO_2在1450~1600℃与Al_2O_3反应生成莫来石。莫来石生长激活能为867~891kJ/mol,莫来石开始生长温度和生长激活能随SiC含量增加而降低。粒度较大的莫来石颗粒主要分布在基体晶界上,而粒度较小的莫来石颗粒多分布在基体晶粒内部,较大含量的莫来石能够阻碍基体晶粒的生长。氧化铝/莫来石复...摘要5-6
Abstract6
第1章 绪论10-26
1.1 课题背景10-11
1.2 复合陶瓷概述11-14
1.2.1 结构陶瓷的研究现状11
1.2.2 复相陶瓷的原位合成法11-12
1.2.3 复合陶瓷强化、增韧机理12-14
1.2.4 颗粒弥散强化复相陶瓷14
1.3 氧化铝基复合陶瓷14-15
1.4 氧化铝/莫来石复合陶瓷15-17
1.5 氧化铝/莫来石复合陶瓷的烧结17-23
1.5.1 Al_2O_3/SiC 系统的高温亚稳性17-19
1.5.2 Al_2O_3/SiO_2 体系中莫来石的形成机理19-23
1.6 本课题选题意义、研究内容23-26
1.6.1 选题意义23
1.6.2 研究内容23-26
第2章 试验材料及方法26-36
2.1 试验设想及方案26
2.2 试验材料和样品制备26-28
2.3 X 射线衍射分析28-31
2.4 微观结构分析31-32
2.5 力学性能测试32-33
2.6 纳米压痕和划痕测试33
2.7 磨损试验33-36
第3 章 试验结果与分析36-54
3.1 氧化铝/莫来石复合陶瓷的反应烧结制备36-37
3.2 微观组织结构分析结果37-44
3.3 宏观力学性能测试结果44-46
3.4 纳米压痕和划痕试验结果46-48
3.5 断口形貌分析结果48-49
3.6 磨损试验结果49-53
3.7 本章小结53-54
第4 章 讨论54-70
4.1 反应烧结过程中莫来石的生长机理54-56
4.2 氧化铝/莫来石陶瓷残余应力对断裂方式的影响56-60
4.3 氧化铝/莫来石陶瓷中莫来石对力学性能的影响60-63
4.4 氧化铝/莫来石复合陶瓷耐磨性的影响因素63-69
4.4.1 磨损表面剥落面积63-66
4.4.2 硬度66
4.4.3 断裂方式66-68
4.4.4 莫来石含量68-69
4.5 本章小结69-70
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)