华林科纳关于不同刻蚀方法对黑硅形貌和半导体特性的比较

华林科纳关于不同刻蚀方法对黑硅形貌和半导体特性的比较,第1张

本文采用飞秒激光蚀刻法、深反应离子蚀刻法和金属催化化学蚀刻法制备了黑硅,研究发现,在400~2200nm的波长内,光的吸收显著增强,其中飞秒激光用六氟化硫蚀刻的黑硅在近红外波段的吸收值最高。但这大大缩短了晶体硅的少数载流子寿命,通过沉积二氧化硅薄膜使黑硅表面钝化,可以有效地调节和控制。最后,以黑硅为基础制造了一种PIN光探测器,与无蚀刻工艺的PIN硅光探测器相比,在1060nm处获得了更高的责任,为0.57A/W。

本文采用FLE、DRIE和MCE三种制备BS的方法,同时直接在c-Si基底上获得了几种抗反射/捕光结构,同时,对三种不同的BS材料的形貌、光吸收、少数载流子寿命进行了比较。最后,基于BS制造了一种PIN光电探测器,并将其责任与无蚀刻工艺的PIN硅光电探测器进行了比较。

图1为在六氟化硫和空气大气中被FLE蚀刻的BS的典型形态。从图中可以看出,在相同的激光参数下,两种大气中蚀刻的BS形态存在明显差异。在图1(a)中,一些锥较大,但其他锥较小,呈现扁平的毯状结构。事实上,在n2大气中蚀刻时,也可以得到相同的形态。在图1(b)中,每个锥的半径约为40μm,基底的截面积约为60μm2,锥锥的直径接近800nm。观察到,六氟化硫制备的BS表面有尖锐的尖锥,尖锥之间几乎没有差异,尖锥的方向与入射光一致。

图2为MCE蚀刻的BS的SEM图,其中分别用30s(a)和60s(b)镀银。(a)的孔直径明显大于(b)。我们认为,在我们的MCE过程中,随着电镀时间的增加,更多的区域附着在硅衬底上,导致更大的蚀刻面积。

综上所述,采用FLE、DIRE和MCE分别制备了黑硅(BS)材料,硅衬底表面的纳米锥阵列或孔的直径和长度分别为100~400nm和1.5~3μm。在400~2200nm的宽波长范围内,黑硅的光吸收显著增强,最大吸收率达到90%,这种增强可以解释为硅衬底表面上特定的纳米结构和/或微观结构所引起的反射率降低、捕光效应和散射效应。然而,由于上述BS结构引起的重组损失和接触电阻的增加,c-Si的少数载流子寿命缩短了。基于三种不同的蚀刻方法,我们发现SiNx钝化可以有效地调整少数载流子的寿命。研制了一种在前端形成BS的新型硅针光电探测器,并对器件的响应率进行了比较。结果表明,在前表面形成BS的Si-PIN光电探测器的响应率明显提高,特别是在近红外w条件下。

调整样品台倾斜角度!一种所谓机械对中样品台在这个调解过程中,虽然不能精确的保证样品倾斜时严格以同一个轴线来调整,但基本观察视野不会跑,不离焦!这样翻过来调过去的看,你就看清楚了!

稍微多讲点有关EM立体成像技术:

1950年代,美国科学家在实验室,第一次使用SEM弄出了立体对,那时SEM还没有商品化!在一般摄影上被称作全息照相!

现在FEI公司有这样的选购软件,可以用在SEM或TEM上。自动控制样品台按照一定角度间隔倾斜,且保证倾斜同轴,每个角度保存一幅图像,然后把N个图像合成一个立体图像,是最为精准的技术。SEM形成表面立体形貌像,TEM的立体像和CT效果相同。由于要求样品台精度极高,且运算复杂,价格贼贵!

为了简化操作,节约成本,只看个大概!最常用的立体对方法是样品角度不变,电子束以一定允许的夹角从两个方向分别扫描一张图像,一张红色伪彩,一张绿色伪彩。把两张照片叠加,形成红绿重影像!然后戴个红绿镜片眼镜,也可看到立体图像,解决你的问题!

除了立体对技术,还有就是线扫描Y增益的示波器技术!

有些扫描电镜带有示波器,扫描发生器让电子束在划定的直线上扫描,然后把信号曲线画在直线上方,因为图像信号强度是电子束与像素表面角度的函数,一般认为曲线的高低起伏代表样品的高低起伏。如果将一帧图像均做Y增益,即可用软件合成一幅立体表面形貌像。有些厂商忽悠客户说此为表面立体像,其实很不严谨,因为很多时候会有假象存在,基本上没有实用价值,很多厂商取消了这个功能!

如果没有做以上的多角度观察,那就要考验成像信号的判断。就这张图像而言,可以肯定:金字塔在基底上凸起!棱角凸起信号强度高,发亮;凹陷信号强度低,发暗!

激光刻蚀技术原理

激光刻蚀的基本原理是将高光束质量的小功率激光束(一般为紫外激光、光纤激光)聚焦成极小光斑,在焦点处形成很高的功率密度,使材料在瞬间汽化蒸发,形成孔、逢、槽。其加工工艺包括激光微纳切割、划片、刻蚀、钻孔等。

激光刻蚀技术特点

激光刻蚀的特点是利用激光具有的无接触加工、柔性化程度高、加工速度快、无噪声、热影响区小、可聚焦到激光波长级的极小光斑等优越的加工性能,获得良好的钻孔、划片、刻蚀和切割尺寸精度和加工质量,尤其是与某些材料(如聚酰亚胺)相互作用是属于“光化学作用”的“冷加工”,可获得无碳化效果,在电子半导体材料加工中应用十分广泛。

元禄光电激光刻蚀参数表

紫外激光刻蚀技术典型应用

1)薄膜激光刻蚀应用

优点:

高重复率,高功率快速材料去除率无化学腐蚀对环境的污染

ITO镀膜激光刻蚀机是由激光对ITO Glass和ITO Film上的ITO镀膜实施电极刻蚀加工的精密设备。可在玻璃、PET基底上ITO镀膜、多晶膜和其他氧化物薄膜上大范围内进行各种图案,各种尺寸的精密、高速刻蚀,加工多种电极。尤其适用于手机触摸屏的电极刻蚀。

ITO玻璃激光刻蚀

2)太阳能电池激光划片应用

优点:

整机结构合理、划片速度快、精度高、功能全、合项性能指标稳定可靠,故障率低非接触加工加工成品率高,适用面广

操作简单方便,能24小时长期连续工作,节能环保

采用图形化用户界面(GUI),友好的人机界面,可实时显示切割轨迹,操作简单直观

可选配图像自动识别处理和定位功能

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。薄膜太阳能电池生产的流程:准备基板(TCO导电玻璃)——玻璃磨边——玻璃清洗——1064激光划线——二次清洗——装夹具升温预热——PECVD沉积非晶硅膜——冷却卸夹具——635激光划线——PVD磁控溅射AL——635激光划线——测试——老化——激光清边——三次清洗——焊电极线——层压——装边框。对薄膜太阳能电池进行激光划片,热影响区小,划线质量优越。无接触式加工避免刀片加工产生的应力,可以有效提高硅片改片的优等品率,同时对电池片划线质量也有很大的改善。可选配CCD图像处理系统,实现特殊规格电池片的精密划线。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/326645.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-02
下一篇2023-05-02

发表评论

登录后才能评论

评论列表(0条)

    保存