从SEM图中怎么看出是多晶还是单晶

从SEM图中怎么看出是多晶还是单晶,第1张

看什么样品。

绝大多数是看不出来。

一般情况下普通SEM图不能用来证明一个材料是不是单晶。

但是如果你确定这个材料是多晶材料,可以通过SEM观察晶界。(有可能需要进行一些预处理,比如腐蚀什么的。)

对于陶瓷材料,肯定是多晶,直接掰开就能用SEM看晶界和晶粒大小。对于金属材料,通过腐蚀也可以观察到晶界。对于薄膜材料,腐蚀后也可以观察晶界。

对于金属样品,有一种方法叫:电子背散射衍射。这种方法需要将样品抛光的非常平整,然后可以观察样品表面的结晶方向,不过这种方法分辨率较低。这种方法一般用来分析金属的金相组织,几乎不用来做单晶的定性分析。

坚定单晶最好的方法还是X射线衍射,方便又便宜。SEM判断是否为单晶说服力很差,不过一些样品的SEM图可以看出是否为多晶。SEM一般不作为坚定单晶的依据,如果你通过其他方法证明材料为单晶,可以用SEM图作为佐证。

1、移出断面图:画在视图外面的断面图称为移出断面图;移出断面图的轮廓线用粗实线画出,并尽量画在剖切符号或剖切面迹线的延长线上,必要时也可将移出断面图配置在其它适当的位置。如上面的移出断面图。画移出断面图时,应注意以下几点:

为了正确表达断面实形,剖切平面要垂直于所需表达机件结构的主要轮廓线或轴线。

当剖切平面通过非圆孔会导致出现完全分离的两个断面时,则这些结构按剖视绘制。

在不致于引起误解时,允许将移出断面图旋转。

2、重合断面图:画在视图之内的断面图称为重合断面图;画重合断面图时,轮廓线是细实线,当视图的轮廓线与重合断面的图形重叠时,视图中的轮廓线仍应连续画出,不可间断。

扩展资料:

1、移出断面图一般应用剖切符号表示剖切位置,用箭头表示投射方向,并注上字母,在断面图的上方用同样的字母标出其名称“×—×”。

2、配置在剖切符号延长线上的不对称移出断面图,应画出剖切符号和箭头,但可省略字母。

3、不配置在剖切符号延长线上的对称移出断面图,不论画在什么地方,均可省略箭头。

4、配置在剖切符号延长线上的对称移出断面图,不必标注;

5、按投影关系配置的移出断面图,可省略箭头。

导读:多孔陶瓷在各个领域都具有巨大的应用潜力。然而,它们的孔隙和强度之间的矛盾极大地阻碍了它们的应用。本文提出了一种简单的定向凝固工艺,该工艺依靠其原位成孔机制来制备 Al2O3/Y3Al5O12/ZrO2具有高度致密和纳米结构的共晶骨架基体和莲花型多孔结构的陶瓷复合材料。这种孔隙率为34%的多孔陶瓷复合材料在常温下的抗弯强度为497 MPa,创下了目前所有多孔陶瓷强度的新纪录。当温度升高到 1773 K 时,这种强度可以保持在 324 MPa,因为它具有精细的层状结构和牢固的键合界面。本文展示了定向凝固在高效制备高纯度超高强度多孔陶瓷中的有趣应用,这些发现将为多孔陶瓷的强度打开一扇窗。

根据格里菲斯脆性强度理论,传统致密陶瓷可以通过提高断裂韧性 K1c4和减小缺陷尺寸 c 来提高其强度 σ。对于多孔陶瓷,孔隙特性是其强度的额外关键。在此背景下,ln σ 与 P 之间的线性关系已通过实验数据证明,通常表示为 σ = σ0e-BP,其中 σ 是多孔体的强度,σ0是相同材料无孔体的强度,P 为孔隙体积分数,B 为 ln σ vs P 曲线的斜率。B 值由孔隙特征决定,该方程表明,通过同时实现孔特征优化(较小的 B)和孔骨架强化(较高的 σ0)可以获得较高的 σ。具有球形孔和定向棒状孔的陶瓷通过直接发泡制备和牺牲模板,分别获得较小的B。

包括冷冻铸造在内的简易技术13,14和生物模板15还可以指导制备具有高度各向异性排列孔的陶瓷,这些孔在特定加载方向上表现出高σ 。这些方法通常包括两个过程,即构建骨架前体和通过烧结使前体致密化。然而,σ0仍然受到限制,因为烧结方法不适合控制缺陷尺寸 c,特别是对于具有低初始密度的骨架前体。为了提高 σ0,研究人员获得了骨架矩阵。

西北工业大学科研人员提出了一种简单的定向凝固工艺,该工艺依靠其原位成孔机制来制备 具有高度致密和纳米结构的共晶骨架基体和莲花型多孔结构的多孔共晶陶瓷复合材料。 这种孔隙率为34%的多孔陶瓷复合材料在常温下的抗弯强度为497 MPa,创下了目前所有多孔陶瓷强度的新纪录。当温度升高到 1773 K 时,这种强度可以保持在 324 MPa,因为它具有精细的层状结构和牢固的键合界面。我们展示了定向凝固在高效制备高纯度超高强度多孔陶瓷中的有趣应用。这些发现将为多孔陶瓷的强度打开一扇窗。 本文以题“Ultrahigh-Strength Porous Ceramic Composites via a Simple Directional Solidification Process”发表在纳米材料领域顶刊NANO上。

链接: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.2c00116

1. (a) 激光浮区装置定向凝固法制备Al2O3/YAG/ZrO2多孔共晶陶瓷复合材料的过程;(b) 原位成孔机制示意图;(c) 气泡和固相耦合生长的动态平衡;(d)移动浮动区域的照片显示的液固界面上的稳定气泡。

图 2. (a) 微计算机断层扫描显示的长 5.70 mm、直径 4.47 mm 的多孔陶瓷棒中孔的 3D 结构;(b) 生长的多孔陶瓷棒断面的典型扫描电子显微镜 (SEM) 图像,表明光滑的孔壁;(c) 生长骨架基质的横截面微观结构的透射电子显微镜 (TEM) 图像。

图4. (a) 不同孔隙率的Al2O3/YAG/ZrO2多孔共晶陶瓷复合材料在室温下的抗弯强度σf和抗压强度σc;(b) ln σ (包括 ln σf和 ln σc) 与 P 的关系。B 的值由它们的线性关系的斜率计算;(c)这项工作的样品与通过各种当前方法制备的报道的多孔陶瓷之间的强度比较。

图 5. (a) 孔隙率为 34.45% 的多孔共晶陶瓷在不同温度下三点弯曲试验的典型应力-位移曲线;(b,c)多孔骨架基质抛光纵向截面的背散射电子图像:(b)原点和(c)弯曲试验后。

总之,作者建立了一个定向凝固技术和多孔陶瓷材料之间的关系。原位成孔机制是它们之间的桥梁,首次为同时强化骨架基质和优化孔隙特性提供了解决方案。上述两个特征有助于刷新当前所有多孔陶瓷的强度记录。孔隙率为34%的试样在常温下的抗弯强度为497 MPa,高于相同成分的致密热压陶瓷。此外,层状共晶结构和相之间的强键合界面使这种多孔陶瓷复合材料在 1773 K 的高温下保持相当大的强度。这项研究证明了定向凝固在有效制备超高强度多孔陶瓷中的有趣应用。高纯度。 随着定向凝固技术的发展和未来更多的成分设计,可以制备出更大尺寸、更高强度的多孔陶瓷复合材料,显著释放多孔陶瓷的潜力。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/339751.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-05
下一篇2023-05-05

发表评论

登录后才能评论

评论列表(0条)

    保存