超滤膜孔径的测定微孔滤膜的孔径分离效率是关键所在,所以评价滤膜孔径甚为重要。
目前大致采用以下方法:
一、直接测量法
1.直接法测膜孔径
(1)电子显微镜
扫描电镜(SEM)和透射电镜(TEM)电子显微镜表征膜的孔径、孔径分布及膜的形态结构。
制样至关重要。湿膜样品要经过脱水、蒸镀、复型等处理。
逐级脱水法:膜样品用5%饿酸固定,然后在提取器中用CCl4或乙醇逐级脱水,再用环氧树脂包埋固化,最后用超薄切片机切成薄片。适用透射电子显微镜的观察。
低温冷冻脱水法:膜样品放在液氮或其他低温介质中冷冻,使膜样品中的水急速冷冻为细小的结晶,然后在低温(至少低于-60°C)和低真空下,使冷冻的结晶逐级升华。这样制备的膜样品不收缩,经镀金或复型,可用电子显微镜观测。
微滤膜的孔径为0.05-10m,扫描电镜可分辨。
超滤膜的孔径为1nm-30mm,扫描电镜的分辨率低于5-10nmnm,所以采用扫描电镜观测超滤膜的结构是困难的。
透射电镜的分辨率比扫描电镜要高得多,约为3-4A正确制样,高分辨率的透射电镜可以观测超滤膜的表面细微结构。
环境扫描电子显微镜(ESEM),克服了常规SEM的局限性。使湿的、油性的、脏的和不导电的样品不经处理就可直接上机观测。
二、间接测量法
间接法是利用与孔径有关的物理现象,通过实验测出相应的物理参数,在假设孔径为均匀直通圆孔的假设条件下,计算得到膜的等效孔径,主要方法有泡点压力法、压汞法、氮气吸附法、液液置换法、气体渗透法、截留分子量法、悬浮液过滤法。
泡点法:
原理
当气体通过充满了液体的膜孔时,若气体的压力与膜孔内液体的界面张力相等,则孔内的液体逸出,即得泡点压力与膜的孔径之间关系:
泡点压力所对应膜的最大孔径。实测时,膜应被液体完全润湿,否则将带来误差。
亲水性膜采用水为润湿液体;疏水性膜采用醇为润湿液体。
测定步骤
a将样品平行于液面浸入蒸馏水中,使其完全湿润b将滤膜置于测试池上,压上光滑的多孔板c在多孔板上加入3-5mm深的水d开通气源,使压力缓慢上升,当滤膜表面出现第一个气泡并连续出泡时的气体压力值,带入公式可求出样品最大孔径值。
e气泡出现最多时的压力值,带入公式可求出样品最小孔径。
f由最大孔径与最小孔径即可算出平均孔径。
(1)电镜法比较直观,但属破坏性检测,也只能得到局部信息
(2)泡压法(又称气体渗透法)只局限于测定膜孔中的最大孔径,用于小孔径超滤膜的测定时所需压力远高于膜的使用压力,故一般认为只适用于微滤膜的测定。
[论文关键词] 锂离子筛 前驱体 制备 检测
[论文摘要] 锂离子筛可以直接从盐湖卤水和海水中提取锂,是极具发展前景的锂吸附剂,介绍锰氧化物锂离子筛前驱体的制备和检测方法,并简要叙述离子筛分材料的发展过程。
锂是自然界中最轻的金属,锂及其化合物有着广泛而特殊的用途,在能源、航空航天工业、金属冶炼及制造业、制冷、玻璃、陶瓷、医药等行业都有着重要的用途:在原子能领域,锂被誉为新“能源元素”,锂-6是氢弹、热核反应堆原料。锂离子电池因其能量高、循环性能好、无毒而广泛用于便携式通讯设备。二十一世纪,用于锂电池的碳酸锂将超过2万吨。锂基润滑脂已成为润滑脂的主导产品。另外,碳酸锂作为情感矫正剂可有效治疗狂躁精神病。目前,世界对锂的需求量越来越大,其消耗量也从侧面反映了一个国家高新技术的发展水平。
全球锂资源约1276万吨,主要分布于花岗岩伟晶型矿床及盐湖中,其中,锂矿石中锂的储量仅为40万吨,约占全球总储量的3.0%,而盐湖卤水中,锂资源的占有率为77%以上。锂矿石中锂的储量远远不能满足市场的需求,固体矿源又不断枯竭,因此锂矿资源的开发利用正面临重大转折,探讨从盐湖卤水、低浓度海水、地下水中提取锂成为目前化学、化工、材料等学科的重要研究课题。盐湖卤水提锂工艺简便、成本约为矿石提锂的一半,目前国外从盐湖卤水中提锂的年产能力近2万吨,约占锂盐总产能力的40%。采用卤水或其他含锂液体矿资源取代矿石生产锂盐是世界锂工业的发展趋势。
一、离子筛分材料的发展过程
1850年,Thompon等,最早系统地研究了土壤中Ca2+、Na2+与水中NH+、K+的离子交换现象。其中具有交换性能的物质后来被鉴定为粘土、海绿石沸石分子筛和腐植酸。一般认为,这是离子筛分材料的最初发现。20世纪初,Harms等合成了硅酸铝凝胶作为离子交换材料应用于水的软化。但其选择性筛分性能较差,耐酸性也不好,性能易变。上世纪60年代,Clearfield A等,发现磷酸锆可以结晶,这为离子筛分材料的.发展指明了一个全新的方向。结晶使得这些磷酸锆的多晶结构得以测定,宏观的离子筛分和交换行为能够从微观结构的角度加以解释。到80年代以后,Kenta ,Qi Feng等合成出了结晶石结构的锂锰氧化物LiMn2O4,该物质对锂离子具有特殊的选择吸附性能。
二、我国盐湖卤水的提锂前景
我国盐湖资源相当丰富,集中分布于青海、西藏、新疆和内蒙古四个省区。锂资源储量大,含量高的盐湖卤水多集中在青海省的柴达木盆地,如:台吉乃尔盐湖、一里坪盐湖、察尔汗盐湖和大柴旦盐湖等,都具有极高的开采价值。西藏的扎布耶湖是世界上锂含量超过百万吨级的三大盐湖之一。因此,建立和发展我国的盐湖锂工业不仅可以将资源优势转化为经济优势,而且可以促进和发展我国西部的经济,并为二十一世纪高科技的发展提供理想的材料。
三、从盐湖卤水提取锂的方法
目前,锂资源的开发及利用主要集中在盐湖卤水提锂的方法上。盐湖卤水提锂的方法有蒸发结晶分离法,沉淀法、浮选法、溶剂萃取法和离子交换法等。蒸发结晶分离法大量使用烧碱和纯碱,致使锂盐产品成本较高沉淀法和溶剂萃取法费时费力浮选法工艺流程复杂而离子交换法成本低,工艺简单,应用广泛。因此,研究开发高效、高选择性的新型无机离子吸附剂成为当今分离技术的发展方向。尖晶石结构的锰氧化物,不仅对Li+具有很高的选择性和较大的交换吸附容量,且具有经济、环保的特点,从而成为国内外学者研究的热点。
四、锂离子筛的制备方法
现阶段制备锂离子筛前驱体LiMn2O4的方法主要分为两大类:固相法和液相法。固相合成法主要分为:高温固相法、微波烧结法和固相配位法等。固相法一般操作较为简单,步骤短,便于大规模生产,易于实现工业化,但耗能大,产率低液相合成法主要包括:溶胶凝胶法、共沉淀和水热法等。液相法一般操作要求高,反应步骤较长,产物粒度均匀、形态规整,晶相较纯。下面选取几种常见的方法分别介绍:
1、高温固相反应法:高温固相反应法是合成锂离子筛前驱体最常用且易操作的一种方法,是将锂和锰的易熔或易分解化合物先按一定的比例混合均匀,再于高温下焙烧一定时间而合成所需化合物。其中,锂源主要有Li2CO3、LiOH·H2O、LiNO3和LiI等锰源主要包括MnO、Mn2O3、MnO2、MnCO3和Mn(CH3COO)2·4H2O等。高温固相反应法具有操作简便、易于工业化的优点。同时,也存在几点不足:能耗大,生产率低锂盐的部分挥发,造成原配比不易把握产物的均匀性差。
2、微波烧结法:微波烧结法是近些年发展起来普遍用于制备陶瓷材料的方法。其主要依据微波直接作用于材料内部后而转化为热能,从材料内部进行加热,进而缩短了反应的时间。微波烧结法可通过调节微波的功率来控制粉末的物相结构,易于工业化,值得关注。但其毕竟属于固相反应,所得粉末的粒度通常只能控制在微米级以上,粉末的形貌稍差。
3、固相配位反应法:此方法也是近些年发展起来的,尤其适于合成金属簇合物和固相配合物的一种方法。首先,在室温或低温下制备固相金属配合物,然后,在一定温度下热分解制得氧化物超细粉末。固相配位反应法保留了传统高温固相反应法操作简便的特点,同时在合成温度、焙烧时间和产物粒度大小及分布等方面又优于它。
4、溶胶凝胶法(Sol-Gel):也称Pechini合成法,属于液相合成法,是基于某些弱酸能与某些阳离子形成螯合物,而螯合物又可与多羟基醇聚合物形成固体聚合物树脂的原理。由于金属离子可与有机酸发生化学反应而均匀分散在聚合物树脂中,达到原子水平的混合,从而在较低温度下可制得超细氧化物粉末。传统的溶胶凝胶法是采用金属醇盐水解制得溶胶,然后干燥得凝胶。
由于该法成本偏高,工艺复杂,材料工作者相继对其进行了改进,派生出一些新方法,如柠檬酸配合法、甘氨酸配合法、高分子聚合物配合法、多羟基酸配合法等。锂离子筛的制备主要是在不破坏前驱体尖晶石构型的前提下,用合适的脱出剂脱出其中的锂离子,以保证所得锂离子筛对锂离子的记忆性。目前,使用的脱出剂主要是酸性化合物,如盐酸、硝酸以及硫酸等。评价脱出效果的指标主要是锂的脱出率及锰的溶损率。人们希望通过采用优良的脱出剂,使锂的脱出率最大、锰的溶损率最小。因为相对于盐酸,硝酸和硫酸都具有较强的氧化性,某种程度上会加大锰的溶损,所以用合适浓度的盐酸作为脱出剂的居多。然而,同种洗脱剂,浓度不同,洗脱时间不同,洗脱效果也不一样。因此,在制备离子筛的时,需要选择出最佳酸洗转型条件。
五、锂离子筛的检测
制备好的离子筛需对其表面形貌检测即对前驱体酸洗脱锂后产物进行SEM检测,得出扫描结果图像。通过与前驱体结构的扫描图像对比可以检测出,在酸洗脱锂过程中前驱体的结构有没有被破坏,再通过与文献中图片对比,可以检测出产物是否为尖晶石晶体结构, 晶型是否完整。然后再对产物(前驱体)进行XRD检测,得出扫描结果图, 根据扫描结果图,判断产物是否为尖晶石型LiMn2O4,是否有杂质。通过与文献中图谱对比,可以检测出产物是否有缺陷,是否为尖晶石型LiMn2O4,是否有杂质等。
六、结语
目前,对离子筛的研究还停留在试验阶段,如果要实现其工业化,就必须先解决其造粒及锰的溶损问题。同时,必须通过改进合成方法、优化实验条件等手段来提高离子筛的实际吸附量。锰氧化物锂离子筛是一种新型的、高效的、绿色的吸附剂,有着良好的应用前景。所以,锰氧化物锂离子筛吸附法已经成为国际上从盐湖卤水和海水中提锂的重要研究方向。
与传统的水凝胶相比,由聚合物网络在离子液体(ionic liquid, IL)中溶胀而形成的离子凝胶(ionogel)具有高热稳定性、高离子电导率、电化学稳定性和非挥发性等优点,有望取代水凝胶应用于驱动器、传感器、可穿戴电子设备和储能设备等领域。然而,大多数离子凝胶的机械性能较差,往往表现出低断裂强度(<1 MPa)、低韧性(~1000 J m -2)和低模量(<0.1 MPa,远低于高韧性水凝胶(断裂强度~7 MPa,模量~210 MPa和韧性~40000 J m -2)。为了解决上述问题,西安交通大学胡建教授课题组联合北卡罗来纳州立大学Michael D. Dickey教授团队报道了一种简单的一步法,通过在离子液体中无规共聚两种具有不同溶解度的单体,原位产生相分离的弹性和刚性域,从而获得了超坚韧和可拉伸的P(AAm-co-AA)离子凝胶。研究发现,丙烯酰胺和丙烯酸单体在 1-乙基-3-甲基咪唑乙基硫酸盐(EMIES)中的无规共聚,可以产生宏观上均相的共价网络,并具有原位相分离域。其中,富含聚合物的刚性相通过在聚合物链之间形成氢键来增韧离子凝胶,而富含溶剂的弹性相能够保持机械完整以实现大的应变。所获得的离子凝胶表现出多项创纪录的机械性能:超高断裂强度(12.6 MPa)、断裂能(~24 kJ m-2)和杨氏模量(46.5 MPa)。同时,离子凝胶还表现出高度可拉伸性(~600% 应变),并具有良好的自恢复性和出色的形状记忆特性。
此外,这种一步法还适用于其他单体和离子液体,该项研究为以简单的方式从普通单体中获得坚韧的凝胶提供了一种实用的方法。相关工作以题为“Tough and stretchable ionogels by in situ phase separation”,发表在《Nature Materials》上。
原位相分离实现超坚韧和可拉伸的离子凝胶
众所皆知,在高度溶剂化的凝胶网络中,很少形成氢键,因为溶剂会分离聚合物链,从而产生柔软且可拉伸的凝胶。相反,低溶剂化的网络,虽然硬度较高,但是往往表现出脆性。为了获得兼具强度和韧性的离子凝胶,研究人员计划通过形成由难溶性和高可溶性聚合物成分组成的无规共聚物来解决这个问题,从而在同一网络中形成溶剂化程度低的相(氢键合,刚性)和高度溶剂化的相(离子键,弹性),协同增韧离子凝胶。简单来说,即通过一步法无规共聚在离子凝胶中同时产生两个负责拉伸性和刚度的不同域,从而产生超坚韧和可拉伸的离子凝胶。
在该工作中,研究人员使用离子液体 1-乙基-3-甲基咪唑乙基硫酸盐 (EMIES)作为离子液体溶剂,聚丙烯酸 (PAA) 作为高溶解性聚合物,聚丙烯酰胺 (PAAm) 作为难溶性聚合物。通过将丙烯酰胺和丙烯酸单体加入EMIES离子液体中,然后加入交联剂和光引发剂,在紫外光的诱导下共聚,从而获得了共聚物离子凝胶P(AAm-co-AA)(图 1)。同时,为了对比,研究人员还制备了单一聚合物离子凝胶(PAA ionogel 和 PAAm ionogel)。
图 1:三种离子凝胶的网络结构示意图。
研究发现,单一聚合物 PAA、PAAm 离子凝胶和共聚物离子凝胶在光学和机械性能方面表现出明显的差异。在光学上,纯 PAA (x = 0) 离子凝胶是透明的,纯 PAAm (x = 1) 离子凝胶是不透明的,而P(AAm x-co-AA 1-x) 共聚物离子凝胶的透明度可以通过改变 x 来调节:在 x = 0.8125 时,在 550 nm 处的透射率从接近 0% 突然转变为 ~90%(图2a)。
图2. 三种离子凝胶的光学图片、机械演示和 SEM 图像。
在机械性能方面, PAA ionogel 可拉伸,但仍然无法举起 1 kg 的重量。PAAm 离子凝胶虽然非常坚硬但易碎。相比之下,共聚物离子凝胶表现出可拉伸性和刚度,能够轻易举起1公斤的重量(图2b)。
1+1=10!共聚物离子凝胶的机械性能打破多项纪录!
研究发现,在小应变 (≤10%) 下,共聚物离子凝胶的杨氏模量为46.5 ± 1.9 MPa,接近于纯 PAAm 离子凝胶 (64.7 ± 0.5 MPa),远远超过纯 PAA 离子凝胶(0.12 MPa)和共聚物水凝胶(0.17 MPa)的模量(图 3c)。然而,与纯 PAAm 离子凝胶不同,共聚物离子凝胶是可拉伸的(图 3b)。在生长过程中,富含聚合物的相通过破坏氢键而变形以耗散能量,而富含溶剂的相分散载荷,使共聚物离子凝胶表现出创纪录的断裂强度12.6 ± 0.2 MPa ,是目前报道最强的离子凝胶!相比之下,纯 PAA、PAAm 离子凝胶和共聚物水凝胶的断裂强度不超过3.2 MPa。同时,与现有离子凝胶相比,共聚物离子凝胶还表现出高达~600%)的断裂应变和创纪录的断裂能 (23348 ± 719 J m −2) ,远超目前报道的最佳值( 4700 J m −2)。
图3. 共聚物离子凝胶的机械性能
此外,悬浮在刚性框架上的膜(厚度 = 0.5 mm)进一步证明了共聚物离子凝胶的显着机械性能。当质量为64g的金属球从 2 m 高度落下时,共聚物水凝胶膜并没有破裂,反而球从共聚物离子凝胶膜上反弹。
纯 PAA 离子凝胶保持溶剂化,形成柔软且纯弹性的网络,而不会耗散能量。 相反,纯 PAAm 离子凝胶会发生相分离,形成硬而脆的网络。AA 和 AAm 在共聚物离子凝胶中的组合提供了两全其美的效果, 富含聚合物的相通过氢键耗散能量,而交联则保留了整个网络,从而赋予其非常高的刚度、韧性和可拉伸性。值得注意的是,尽管由大部分液体组成(~66 wt%),共聚物离子凝胶实现了约 24000 J m -2 的高断裂能和 12.6 MPa 的超高断裂强度,以及高达46.5 MPa的杨氏模量,优于大多数现有的坚韧凝胶、生物组织和天然橡胶。
两种相域的不同玻璃化转变温度赋予共聚物离子凝胶多功能性
此外,超坚韧的共聚物离子凝胶还表现出良好的自恢复性、出色的自愈性和出色的形状记忆性能(图 4和视频3)。
图4. 共聚物离子凝胶的自我恢复、自我修复和形状记忆特性。
共聚物离子凝胶的多功能行为与共聚物离子凝胶的独特特性有关,它具有两个玻璃化转变温度 (Tg)。富含溶剂的区域的 Tg1 为 -42.6 °C,而富含聚合物的区域的 Tg2 为 48.2 °C。高于 Tg2,离子凝胶变成橡胶状,为聚合物链的弹性恢复提供驱动力。因此,在高于 Tg2 的温度下可以观察到形状记忆行为和自愈特性。类似地,在机械变形后,可以通过调节温度来恢复共聚物离子凝胶的形态。
此外,所报道的合成方法不仅限于上述材料,还可以应用于各种聚合物和离子液体的组合,以制备具有定制特性的离子凝胶,这表明其具有广泛的适用性。
参考文献:
1. Wang, M., Zhang, P., S hamsi, M. et al. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01195-4
2. Cha, G.D., Kim, DH. Toughness and elasticity from phase separation. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01214-4
作者简介
胡建,教授,博导。2006年毕业于浙江大学化工系获得学士学位,2008年毕业于浙江大学化工系高分子化工专业获得硕士学位,随后获得日本文部省奖学金,留学北海道大学生物系,并于2012年获得博士学位。之后在北海道大学化学系从事了三年的博士后工作。2016年4月到西安交通大学航天航空学院全职工作,并入选学校的“青年拔尖人才支持计划”A类(教授)。
目前的研究领域是智能材料、高分子复合材料、软物质力学,研究兴趣主要集中在软物质材料的结构设计和性能分析,研究成果相继发表在Nat. Mater.、J. Am. Chem. Soc.、Nano Letters、Macromolecules等期刊上。
Michael Dickey教授,现为北卡罗来纳州立大学化学和生物分子工程教授。他于1999年佐治亚理工学院获得化学工程学士学位,2003年和2006年分别获得德州大学奥斯汀分校化学工程的硕士和博士学位。自2006开始,他在哈佛大学化学系进行为期三年的博士后工作,随后进入北卡罗来纳州立大学化学和生物分子工程学院进行工作。
Michael Dickey教授团队主要研究工作涉及聚合物薄膜、微流体、软材料、纳米电子学、光伏以及微观和纳米加工的跨学科问题。工作主要是通过简单、廉价和可扩展的方式来构建功能设备,包括可拉伸电子设备、高效太阳能电池、仿生系统、能量收集基板等。在Nat. Mater.、Nat. Commun.、Adv. Mater.等期刊发表论文360余篇,被引次数高达19000余次,H因子为65.
Michael Dickey教授获得很多荣誉和表彰,其中包括ASEE Southeastern Section New Faculty Research Award (2013),University Faculty Scholar (2013),Outstanding Teacher Award - Member of the Academy of Outstanding Teachers at NC State University (2012),Sigma Xi Faculty Award (2011),National Science Foundation CAREER Award(2010)。
--纤维素--
--帮测科技--
来源:高分子科学前沿
声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)