让所有老外惊愕窒息! 俞书宏院士研发的到底是种什么材料?

让所有老外惊愕窒息! 俞书宏院士研发的到底是种什么材料?,第1张

要说最近一段时间化工界什么话题最火,材料一定是绕不开的话题。因为疫情的影响,从口罩到熔喷布再到聚丙烯,我们快速见证了熔喷布从一文不名到五十万/吨的天价,而后又跌的让很多投机商裤衩不剩的情况。之所以如此疯狂,和很多媒体的引导是分不开的,但和很多行业的靠概念炒作不一样,化工行业一直是依靠技术推动的。化工人坚信大潮退去才知道谁在裸泳。 

当有些人在忙着投入身家性命去炒概念,另一批人则在务实的科研和创新。同样在五月份,化工界的一件大事成为公众街头巷尾热议的重点:中国科学技术大学俞书宏院士团队在国际上首次将纳米纤维素加工成一种新材料,该材料在汽车、航空航天等领域具有应用前景,并有望替代工程塑料减少污染。

"众所周知,材料领域一直是成就化工行业传奇的重点领域,从尼龙到聚氨酯,可以说材料领域的创新引领着时代的创新。

1纤维素纳米纸

纳米纤维素(NC)作为自然界来源丰富的可再生天然高分子材料,不仅具备纤维素的基本性质, 还拥有纳米材料的一些特殊性能,有着巨大的发展潜力。目前,以纳米纤维素为基本单元成功制备了多种性能优异的结构和功能材料, 极大提高了纤维素的附加值和利用效率。由纳米纤维素通过真空过滤等方法制备的纤维素纳米纸(CNP)不仅拥优异的力学性能、光学性能和热性能,同时还具有来源丰富、可再生的优点,是一种极具前景的柔性、透明膜材料。目前已被成功应用于太阳能电池、超级电容器和有机发光二极管等柔性/可穿戴电子领域。

2硼墨烯

位于元素周期表中的第五位元素硼, 其丰富的化学结构和多样的成键方式仅次于有机化学和生物科学中的核心元素——碳元素。硼的缺电子性质导致其必须通过多中心键的方式共享电子以平衡体系的电子分布, 因此硼团簇多具有独特的几何结构和电子离域的成键特性。近年来, 硼团簇及其材料的研究越来越受到人们的重视, 并取得了一系列研究成果。

3超高温陶瓷

超高温陶瓷材料(Ultrahigh-Temperature Ceramics,简称UHTCs)最早由美国空军开发,主要指高温环境(2000℃以上)和反应气氛中(如原子氧环境)能够保持化学稳定的一种特殊材料,通常包括硼化物、碳化物、氧化物在内的一些高熔点过渡金属化合物,由上述化合物组成的多元复合陶瓷材料统称为超高温陶瓷材料。

以创新材料为代表的化学,不仅一个国家科研能力的表,更是决定了我们能否在不远的将来能否抢占技术制高点的关键。清华大学教授、中国科学院院士邱勇就曾经直言我国的新材料发展大大滞后于制造业的需求。所以在这里我们也要说出化工人的心声:请媒体不要再引导我们的年轻人变成短视的守财奴!我们需要的是有更多的俞书宏,而不是更多的熔喷布大亨!

本文要点:

提出一种纳米纤维碳连接方法,通过气泡模板法制备超轻 rGO/CNF 碳气凝胶(CAG)。

成果简介

超轻、高压缩性和超弹性的碳材料在可穿戴和柔性电子器件中有很大的应用前景,但由于碳材料的脆性,其制备仍然是一个挑战。 华南理工大学刘传富教授团队在《CHEMNANOMAT》 期刊发表名为“Enhancing the Mechanical Performance of Reduced Graphene Oxide Aerogel with Cellulose Nanofibers”的论文, 研究通过 增强纤维素纳米纤维 (CNF) 的氧化石墨烯 (GO) 液晶稳定气泡成功制备了超低密度、高机械性能的碳气凝胶 。

还原氧化石墨烯(rGO)纳米片中引入CNF后,通过焊接效应增强了rGO纳米片之间的相互作用,限制了rGO纳米片的滑移和微球之间的剥离,从而显著提高了材料的力学性能。所制备的碳气凝胶具有超高的压缩性(高达99%的应变)和弹性(在50%应变下10000次循环后90.1%的应力保持率和99.0%的高度保持率),通过各种方法制备的碳气凝胶均优于现有的气泡模板碳气凝胶和许多其它碳材料。这种结构特征导致了快速稳定的电流响应和对外部应变和压力的高灵敏度,使碳气凝胶能够检测非常小的压力和从手指弯曲到脉搏的各种人体运动。这些优点使得碳气凝胶在柔性电子器件中具有广阔的应用前景。

图文导读

图1、rGO/CNF 碳气凝胶的制备示意图(a)和 CNF 之间以及 CNF 和 GO 之间的相互作用(b)。没有 (c) 和 (d) 交叉偏振器的 GO/CNF 气泡乳液的 POM 图像。CAG (e) 的 SEM 图像。超轻 CAG 立在花瓣上的照片 (f)。

图2.GO (a) 和 CNF (b) 的 AFM 图像和相应的高度图像。GO(c 和 d)和 GO/CNF(e 和 f)的 SEM 图像显示了 CNF 在起皱的 GO 纳米片中的分布。rGO (g) 和 rGO/C-CNF (h) 的 TEM 图像揭示了 C-CNF 在 rGO 纳米片中的均匀分布。

图3.宏观可视化显示 rGO/CNF 碳气凝胶的超弹性(a)。具有不同 CNF 含量的碳气凝胶的密度(b)。AG 和 CAG-X 在 50% 应变下的应力-应变曲线 (c)。AG 和 CAG-X 在 50% 应变下经过 1000 次压缩循环后的应力保持率和高度保持率(d)。AG、CAG-5、CAG-10、CAG-20、CAG-30 和 CAG-50 (e) 的 SEM 图像。

图4、说明 AG (a) 和 CAG (b) 的可压缩性和弹性机制的示意图。CNF碳纳米纤维将rGO纳米片焊接在一起,限制了rGO纳米片的滑动,从而提高了机械强度和抗疲劳性。rGO/CNF 纳米片的有限元模拟(c)。

图5、CAG-20 具有超强的压缩性、弹性和抗疲劳性。CAG-20 在不同压缩应变下的应力-应变曲线 (a)。50% 应变下 1、1000、10000 和 20000 次循环的应力-应变曲线 (b)。极端应变为 99% 时的应力-应变曲线 (c)。90% 应变下 200 次循环的应力-应变曲线 (d)。CAG-20 压缩前的 SEM 图像(e)。CAG-20 在 50% 应变下经过 20,000 次压缩循环后的 SEM 图像 (f)。各种碳材料的应力/密度指数 (g)、应力保持率 (h) 和高度保持率 (i) 的比较。

图6.应变/应力——CAG-20 的电流响应和灵敏度。应变为 10% 至 70% (a) 时的电流强度。在 50% 应变和 1 V 的恒定电压下,1000 次循环的电流输出 (b)。0-100 Pa 时的线性灵敏度(插入:0.1-7 kPa 时的灵敏度)(c)。组装基于 CAG-20 的传感器 (d)。来自轻压 (e)、手指弯曲 (f)、肘部弯曲 (g) 和面部表情 (h) 的电流信号。脉搏信号检测(i)。

小结

综上所述,通过GO液晶的气泡模板法制备了具有低密度、高机械和传感性能的rGO/CNF碳气凝胶。碳化的 CNF 通过增强 rGO 纳米片之间的相互作用,在提高碳气凝胶的机械强度和结构稳定性方面发挥着至关重要的作用。 碳气凝胶表现出超高的压缩性和弹性,以及抗疲劳性。高机械性能和稳定的微观结构赋予碳气凝胶快速稳定的电流响应和高灵敏度。因此,它在用于检测生物信号的可穿戴设备中具有巨大的应用潜力。

链接:https://doi.org/10.1002/cnma.202100150

文献:

纳米纤维素与海藻酸钠的结构:

1、纳米纤维素:纤维素纳米纤维内部高度结晶可以提供极高的强度,纤维之间通过大量氢键等可逆相互作用网络进行结合。

2、海藻酸钠。海藻酸钠的分子是由连续的M段(MMM)、连续的G段(GGG)或者是M与G交替的结构片段组成。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/379487.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-15
下一篇2023-05-15

发表评论

登录后才能评论

评论列表(0条)

    保存