SEM与TEM带的EDAX的分辨率是多少

SEM与TEM带的EDAX的分辨率是多少,第1张

1.做TEM测试时样品的厚度最厚是多少 ?

TEM的样品厚度最好小于100nm,太厚了电子束不易透过,分析效果不好。

2.请问样品的的穿晶断裂和沿晶断裂在SEM图片上有各有什么明显的特征?

在SEM图片中,沿晶断裂可以清楚地看到裂纹是沿着晶界展开,且晶粒晶界明显;穿晶断裂则是裂纹在晶粒中展开,晶粒晶界都较模糊。

3.做TEM测试时样品有什么要求?

很简单,只要不含水分就行。如果样品为溶液,则样品需要滴在一定的基板上(如玻璃),然后干燥,再喷碳就可以了。如果样品本身导电就无需喷碳。

4.水溶液中的纳米粒子如何做TEM?

透射电镜样品必须在高真空中下检测,水溶液中的纳米粒子不能直接测。一般用一个微栅或铜网,把样品捞起来,然后放在样品预抽器中,烘干即可放入电镜里面测试。如果样品的尺寸很小,只有几个纳米,选用无孔的碳膜来捞样品即可。

5.粉末状样品怎么做TEM?

扫描电镜测试中粉末样品的制备多采用双面胶干法制样,和选用合适的溶液超声波湿法制样。分散剂在扫描电镜的样品制备中效果并不明显,有时会带来相反的作用,如干燥时析晶等。

6.EDS与XPS测试时采样深度的差别?

XPS采样深度为2-5nm,我想知道EDS采样深度大约1um.

7.能谱,有的叫EDS,也有的叫EDX,到底哪个更合适一些?

能谱的全称是:Energy-dispersiveX-ray spectroscopy

国际标准化术语:

EDS-能谱仪

EDX-能谱学

8.TEM用铜网的孔洞尺寸多大?

捞粉体常用的有碳支持膜和小孔微栅,小孔微栅上其实也有一层超薄的碳膜。拍高分辨的,试样的厚度最好要控制在 20 nm以下,所以一般直径小于20nm的粉体才直接捞,颗粒再大的话最好是包埋后离子减薄。

9.在透射电镜上观察到纳米晶,在纳米晶的周围有非晶态的区域,我想对非晶态的区域升温或者给予一定的电压(电流),使其发生变化, 原位观察起变化情况?

用原子力显微镜应该可以解决这个问题。

10.Mg-Al合金怎么做SEM,二次电子的?

这种样品的正确测法应该是先抛光,再腐蚀。若有蒸发现象,可以在样品表面渡上一层金。

11.陶瓷的TEM试样要怎么制作?

切片、打磨、离子减薄、FIB(强烈推荐)

12.透射电子显微镜在高分子材料研究中的应用方面的资料?

殷敬华 莫志深 主编 《现代高分子物理学》(下册) 北京:科学出版社,2001[第十八章 电子显微镜在聚合物结构研究中的应用]

13.透射电镜中的微衍射和选区衍射有何区别?

区别就是电子束斑的大小。选区衍射束斑大约有50微米以上,束斑是微米级就是微衍射。微衍射主要用于鉴定一些小的相

14.SEM如何看氧化层的厚度?通过扫描电镜看试样氧化层的厚度,直接掰开看断面,这样准确吗?

通过扫描电镜看试样氧化层的厚度,如果是玻璃或陶瓷这样直接掰开看断面是可以的;如果是金属材料可能在切割时,样品结构发生变化就不行了,所以要看是什么材料的氧化层。

15.TEM对微晶玻璃的制样要求

先磨薄片厚度小于500um,再到中心透射电镜制样室进行钉薄,然后离子减薄。

16.电子能量损失谱由哪几部分组成?

EELS和HREELS是不同的系统。前者一般配合高分辨透射电镜使用,而且最好是场发射枪和能量过滤器。一般分辨率能达到0.1eV-1eV,主要用于得到元素的含量,尤其是轻元素的含量。而且能够轻易得到相应样品区域的厚度。而HREELS是一种高真空的单独设备,可以研究气体分子在固体表面的吸附和解离状态。

17.研究表面活性剂形成的囊泡,很多文献都用cryoTEM做,形态的确很清晰,但所里只能作负染,能很好的看出囊泡的壁吗?

高分子样品在电子束下结构容易破坏,用冷冻台是最好的方式。做负染是可以看到壁的轮廓,但是如果要细致观察,没有冷冻台大概不行吧?我看过的高分子样品都是看看轮廓就已经很满意了,从来没有提到过更高要求的。

18.hkl、hkl指的是什么?

(hkl)表示晶面指数 {hkl} 表示晶面族指数

[hkl] 表示晶向指数 表示晶向族指数

(h,k,-h-k,l)六方晶系的坐标表示法林海无边

19.电镜测试中调高放大倍数后,光斑亮度及大小会怎样变化?

变暗,因为物镜强了,焦距小了,所以一部分电流被遮挡住了,而亮度是和电流成正比的。由于总光束的强度是一定的,取放大倍率偏大则通过透镜的电子束少,反则电子束大。调节brightness就是把有限的光聚在一起,

20.氧化铝TEM选取什么模式?

氧化铝最好用lowdose模式,这样才会尽量不破坏晶体结构,

21.ZSM-5的TEM如何制样?

在玛瑙研钵中加上酒精研磨,在超声波中分散,滴到微栅上就可以了。辐照的敏感程度与SiAl比有关,SiAl比越大越稳定。

22.对于衍射强度比较弱,寿命比较短的高分子样品,曝光时间是长一些还是短一些?

因为衍射比较弱,虽然长时间曝光是增加衬度的一种方法,但是透射斑的加强幅度更大,反而容易遮掩了本来就弱的多得点,而且样品容易损坏,还是短时间比较合适。我曾经拍介孔分子筛的衍射,比较弱,放6-8s,效果比长时间的好。

23.请教EDXS的纵坐标怎么书写?

做了EDXS谱,发现各种刊物上的图谱中,纵坐标不一致。可能是因为绝对强度值并不太重要,所以x射线能谱图纵坐标的标注并没有一个统一的标准。除了有I/CPS、CPS、Counts等书写方法外,还有不标的,还有标成Intensity或Relative Intensity的,等等。具体标成什么形式,要看你所投杂志的要求。一般标成CPS的比较多,它表示counts per second,即能谱仪计数器的每秒计数。

24.EDAX和ED 相同吗?

EDAX有两个意思,一指X射线能量色散分析法,也称EDS法或EDX法,少用ED表示;二是指最早生产波谱仪的公司---美国EDAX公司。当然生产能谱仪的不只EDAX公司,还有英国的Oxford等。

EDAX指的是扫描电子显微镜(SEM)或透射电子显微镜(TEM)上用的一种附属分析设备---能谱仪,或指的是最早生产能谱仪的公司---美国伊达克斯有限公司,或这种分析技术。当我们在电镜上观察电子显微图像的同时,可以用这种附属设备分析显微图像上的一个点,或一个线或一个面上各个点所发射的X射线的能量和强度,以确定显微图像上我们感兴趣的哪些点的元素信息(种类和含量)。

25.二次衍射

由于电子在物质内发生多次散射,在一次散射不应当出现的的地方常常出现发射,这种现象称为二次衍射。在确定晶体对称性引起的小光反射指数的规律性时,必须注意这种二次衍射现象。二次衍射点是一次衍射的衍射波再次发生衍射的结果。二次衍射点可以出现在运动学近似的两个衍射点的倒易矢量之和所在的位置。特别是,在通过原点的轴上二次衍射点出现的可能性很大。另外也要充分注意 其强度也变强。

26.什么是超晶格?

1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.他们设想如果用两种晶格匹配很好的半导体材料交替地生长周期性结构,每层材料的厚度在100nm以下,如图所示,则电子沿生长方向的运动将会产生振荡,可用于制造微波器件.他们的这个设想两年以后在一种分子束外延设备上得以实现.可见,超晶格材料是两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性的多层膜,事实上就是特定形式的层状精细复合材料。

27.明场像的晶格中白点是金属原子吗?

由于受电子束相干性、透镜的各种像差、离焦量以及样品厚度等因素的影响得到的高分辨像一般不能直接解释,必须进行图像模拟,所以图中白点是不是金属原子不好说,要算一下才知道。

28.碳管如何分散做TEM?

看碳管最好用微栅,由于碳膜与碳管反差太弱,用碳膜观察会很吃力。尤其是单壁管。另外注意不要将碳膜伸进去捞,(这样会两面沾上样品,聚不好焦)样品可以滴、涂、抹、沾在有碳膜的面上,表面张力过大容易使碳膜撑破。

29.不同极靴的分辨率

极靴分为:超高分辨极靴、高分辨极靴、高倾斜极靴。超高分辨极靴点分辨率在0.19nm,高分辨极靴点分辨在0.24nm,但是实际情况是达不到的。场发射与LaB6的分辨率是一样的,就是速流更加稳定,亮度高是LaB6亮度的100倍。

30.如果机器放电了——电子枪内充足氟里昂到规定指标。

在电压正常,灯丝电流也正常的情况下,把所有的光阑都撤出,但是还是看不到光线——电子枪阀未打开。

撤出所有光阑,有光束,但是有一半被遮挡住,不知是什么原因——shut 阀挡着部分光线。

31.标尺大小怎么写?

标尺只能用1、2、5这几个数比如1、2、5、10、20、50、100、200、500,没有用其他的。

32.TEM和STEM图像的差别?

TEM成像:照明平行束、成像相干性、结果同时性、衬度随样品厚度和欠焦量发生反转。由于所收集到散射界面上更多的透过电子,像的衬度更好!

STEM成像:照明会聚束、成像非相干、结果累加性,在完全非相干接收情况下像的衬度不随样品厚度和欠焦量反转,可对更厚一点的样品成像。

33.纳米环样品品(nanorings)怎么制样?

土办法,把铜网放到你的样品里,手动摇一会即可。这样做样品可以不用乙醇分散的,观察前用洗耳球吹掉大颗粒即可,一般的纳米级样品这样都能挂样。只是刮样的均匀度比较差些。

还有取一点样品放到研钵里,用铜网像工地筛沙一样多抄几次也是可以的。

34.关于醋酸双氧铀的放射性

醋酸双氧铀中铀236的半衰期长达2400万年,没多大问题,可以放心用!

35.内标法

采用已知晶格样品(金颗粒),在相同电镜状态下(高压),对应一些列相机长度,相机长度L就是你说的0.4、0.8和1米,通过电镜基本公式H=Rd=Ls,(H相机常数s为波长),可以得到一组相机常数,保留好。以后就可以很方便的用了

36.什么软件可以模拟菊池图?

JEMS可以,画电子衍射花样的时候选上菊池线就行了。

37.透射电镜的金属样品怎么做?

包括金属切片、砂纸打磨、冲圆片、凹坑研磨、双喷电解和离子减薄、FIB制样(块体样品的制样神器)。

38.透射电镜薄膜样品制备的几种方法(真空蒸发法,溶液凝固法,离子轰击减薄法,超薄切片法,金属薄膜样品的植被)的介绍

可以参考《电子显微分析》章晓中老师、《材料评价的分析电子显微学方法》刘安生老师

39.四氧化锇的问题

样品用四氧化锇溶液浸泡,一方面可以对弹性体进行染色,一方面可以使塑料硬化。四氧化锇挥发性果真强,把安醅瓶刻痕,放进厚玻璃瓶,用橡皮塞塞紧,晃破安醅瓶,用针筒注蒸馏水,使其溶解,当把橡皮塞拿开换成玻璃塞时,发现橡皮塞口部已经完全被熏黑!使用时一定要加防护,戴防护面具,手套,在毒气柜中操作,毒气柜上排气一定要好.这样对自己和他人都好!

40.制作高分子薄膜(polymer film)电镜样品

一般都是在玻璃或者ITO衬底上甩膜后,泡在水中,然后将膜揭下来。不过对于厚度小于100nm的薄膜,是很难用这种方法揭下来的。高分子溶液甩膜在光滑的玻璃上面(玻璃要用plazmaor uv ozon处理过), 成膜后立即放在水里面,(不要加热和烘干,否则取不下来)利用水的张力,然后用塑料镊子从边缘将薄膜与玻璃分开,可以处理大约70nm的膜。然后将膜放在grid上面就可以了!

41.如何将三个晶面指数转化成四个的晶面指数

三轴晶面指数(hkl)转换为四轴面指数为(hkil),其中i=-(h+k)

六方晶系需要用四轴指数来标定,一般的晶系如立方、正交等用三轴指数就可以了。

42.能谱的最低探测极限

在最佳的实验条件下,能谱的最低探测极限在0.01-0.1%上下,离ppm还有些距离。如果可以制成TEM样品,也许可以试试电子全息。半导体里几个ppm的参杂可以用这个方法观察到。

43.CCD比film的优势

当前的TEM CCD已经可以完全替代底片,在像素点尺寸(小于20um)、灵敏度、线性度、动态范围、探测效率和灰度等级均优于film。由于CCD极高的动态范围,特别适合同时记录图像和电子衍射谱中强度较大的特征和强度较弱的精细结构。

44.小角度双喷,请教双喷液如何选择?

吴杏芳老师的书上有一个配方:

Cu化学抛光:50%硝酸+25%醋酸+25%磷酸 20摄氏度

CuNi合金:电解抛光 30mL硝酸+50mL醋酸+10mL磷酸

--电子显微分析实用方法,吴杏芳 柳得橹编

45.非金属材料在喷金时,材料垂直于喷金机的那个垂直侧面是否会有金颗粒喷上去?

喷金时正对喷头的平面金颗粒最多,也是电镜观察的区域,侧面应该少甚至没有,所以喷金时一般周围侧面用铝箔来包裹起来增加导电性。

46.Z衬度像是利用STEM的高角度暗场探测器成像,即HAADF。能否利用普通ADF得到Z衬度像?

原子分辨率STEM并不是HAADF的专利,ADF或明场探头也可以做到,只是可直接解释性太差,失去了Z衬度的优势。HAADF的特点除了收集角高以外,其采集灵敏度也大大高于普通的ADF探头。高散射角的电子数不多,更需要灵敏度。ADF的位置通常很低,采集角不高(即使是很短的相机长度),此外它的低灵敏度也不适合弱讯号的收集。

47.透射电镜简单分类?

透射电镜根据产生电子的方式不同可以分为热电子发射型和场发射型。热电子发射型用的灯丝主要有钨灯丝和六硼化镧灯丝;场发射型有热场发射和冷场发射之分。

根据物镜极靴的不同可以分为高倾转、高衬度、高分辨和超高分辨型。

48.TEM要液氮才能正常操作吗?

不同于能谱探头,TEM液氮冷却并不是必须的,但它有助于样品周围的真空度,也有助于样品更换后较快地恢复操作状态。

49.磁性粒子做电镜注意事项?

1.磁性粒子做电镜需要很谨慎,建议看看相关的帖子

2.分散剂可以用表面活性剂,但是观察的时候会有局部表面活性剂在电子束辐照下分解形成污染环,妨碍观察。

50.电压中心和电流中心的调整?

HT wobbler调整的是电压中心,OBJ wobbler调整的是电流中心,也有帮助聚焦的wobbler-image x和imagey。

51.水热法制备的材料如何做电镜?

水热法制备的材料容易含结晶水,在电子束的辐照下结构容易被破坏,试样在电镜的高真空中过夜,有利于去掉部分结晶水。估计你跟操作的老师说了,他就不让你提前放样品了。

52.TEM磁偏转角是怎么一会事,而又怎样去校正磁偏转角?

一般老电镜需要校正磁偏转角,新电镜就不用做了。现在的电镜介绍中都为自动校正磁偏转角。

53.分子筛为什么到导电?

分子筛的情况应该跟硅差不多吧。纯硅基本不导电,单硅原子中的电子不像绝缘体中的电子束缚的那么紧,极少量的电子也会因电子束的作用而脱离硅原子,形成少量的自由电子。留下电子的空穴,空穴带有正电,起着导电作用。

54.电子衍射图谱中都会发现有一个黑色的影子,是指示杆的影子,影子的一端指向衍射中心。为什么要标记出这个影子在衍射图谱中呢?

beam stopper主要为了挡住过于明亮的中心透射斑,让周围比较弱的衍射斑也能清晰的显现。

55.HAADF-STEM扫描透射电子显微镜高角环形暗场像

高分辨或原子分辨原子序数(Z)衬度像(high resolution or atomic resolution Z-contrast imaging)也可以叫做扫描透射电子显微镜高角环形暗场像(HAADF-STEM)这种成像技术产生的非相干高分辨像不同于相干相位衬度高分辨像,相位衬度不会随样品的厚度及电镜的焦距有很大的变化。像中的亮点总是反映真实的原子。并且点的强度与原子序数平方成正比,由此我们能够得到原子分辨率的化学成分信息。

56.TEM里的潘宁规

测量真空度的潘宁规不测量了,工程师让拆下清洗,因为没有"内卡钳",无法完全拆卸,只好用N2吹了一会儿,重新装上后也恢复正常了,但是工程说这样治标不治本,最好是拆卸后用砂纸打磨,酒精清洗.

57.电子衍射时可否用自动曝光时间,若手动曝光.多少时间为宜?

电子衍射不能用自动曝光,要凭经验。一般11或16秒,如果斑点比较弱,要延长曝光时间。

58.CCD相机中的CCD是什么意思?

电荷耦合器件:charge-coupled device

具体可以参见《材料评价的分析电子显微方法》中Page35-42页。

59.有公度调制和无公度调制

有许多材料在一定条件下,其长程关联作用使得晶体内局域原子的结构受到周期性调制波的调制。若调制周期是基本结构的晶格平移矢量的整数倍,则称为有公度调制;若调制周期与基本结构的晶格平移矢量之比是个无理数,称为无公度调制。涉及的调制结构可以是结构上的调制,成分上的调制,以及磁结构上的调制。调制可以是一维的、二维的,和三维的。

60.高分辨的粉末样品需要多细?

做高分辨的粉末样品,就是研磨得很细、肉眼分辨不了的颗粒。几十个纳米已经不算小了。颗粒越小,越有可能找到边缘薄区做高分辨,越有利于能损谱分析;颗粒越大,晶体越容易倾转到晶带轴(比如做衍射分析),X-光的计数也越高。

61.电镜灯丝的工作模式?

钨或LaB6灯丝在加热电流为零时,其发射电流亦为零。增加加热电流才会有发射电流产生,并在饱和点后再增加加热电流不会过多地增加发射电流。没有加热电流而有发射电流,实际上就是冷场场发射的工作模式。但这也需要很强的引出电压(extraction voltage)作用在灯丝的尖端。

62.晶体生长方向?

晶体生长方向就是和电子衍射同方向上最低晶面指数的一个面,然后简化为互质的指数即可。比如如果是沿着晶体的生长方向上是(222),那么应该(111)就是生长方向。

63.N-A机制

小单晶慢慢张大,最后重结晶成单晶,叫做N-A机制,nucleation-aggregation mechanism.

64.透射电镜能否获得三维图象?

可以做三维重构,但需要特殊的样品杆和软件。

65.纳米纤维TEM

做PAN基碳纤维,感觉漂移现象可能是两个原因造成的:一是样品没有固定好,二是导电性太差。我们在对纤维样品做电镜分析时一般采用把纤维包埋然后做超薄切片的方法,如果切的很薄(30~50nm),可以不喷金,直接捞到铜网中观察即可。

66.离子减薄过程

在离子减薄之前,应该用砂纸和钉薄机对样品进行机械预减薄,机械预减薄后样品的厚度为大约10微米,再进行离子减薄。

离子减薄时,先用大角度15-20度快速减薄,然后再用小角度8-10度减至穿孔。

67.四级-八级球差矫正器的工作原理?

如果想要了解一下原理,看看相关的文章就可以了。

比如

Max Haider et al,Ultramicroscopy 75 (1998) 53-60

Max Haider et al,Ultramicroscopy 81 (2000) 163-175

68.明场象和暗场象

明场象由投射和衍射电子束成像,

暗场象由某一衍射电子束(110)成像,看的是干涉条纹。

69.在拍照片时需要在不同的放大倍数之间切换,原先调好的聚光镜光阑往往会在放大倍数改变后也改变位置,也就是光斑不再严格同心扩散,为什么?

这很正常,一般做聚光镜光阑对中都是在低倍(40K)做,到了高倍(500K)肯定会偏,因为低倍下对中不会对的很准。

一般来说,聚光镜光阑我都是最先校正的,动了它后面那几项都要重新调的。准备做高分辨的时候,一般直接开始就都在准备拍高分辨的倍数下都合好了,这样比较方便。

70.能量过滤的工作原理是什么?

能量过滤像的工作原理简单的可以用棱镜的分光现象来理解,然后选择不能能量的光来成像。

能量过滤原理是不同能量(速度)电子在磁场中偏转半径不一样(中学时经常做的那种计算在罗伦茨力作用电子偏转半径的题),那么在不同位置上加上一个slit,就这样就过滤出能量了。

71.真空破坏的后果

影响电镜寿命倒不会,影响灯丝寿命是肯定的。

72.EDX成分分析结果每次都变化

EDX成分分析结果每次都变化的情况其实很简单,在能谱结果分析软件中,View菜单下有个Periodic table, 在其ROI情况下选择你要作定量的元素,鼠标右键选出每个元素所要定量的峰,重新作定量就不会出现你所说的问题。

73.使用2010透射电子显微镜时,发现:当brightness聚到一起时,按下imag x 呈现出两个非同心的圆,调整foucs就会使DV 只不等于零。请问各位,如果想保持dv=0,需要进行怎样的调整?

把dv调节到+0,然后用z轴调节样品高度,使imagex的呈最小抖动即可。

74.图象衬度问题

乐凯的胶片衬度比柯达的要差一些,但性价比总是不错的。建议使用高反差显影液来试试。

可以用暗场提高衬度,我一直在用暗场拍有机物形貌!wangmonk(2009-6-06 07:33:02)

75.高分子染色的问题

磷钨酸是做负染样品用的染液,我们通常用1%或2%的浓度,浓度大了会出现很多黑点或结晶状团块.另外样品本身浓度很关键,可多试几个浓度.样品中如果有成分易与染液结合的也会出现黑点或黑聚集团.磷钨酸用来染色如尼龙即聚酰胺可使其显黑色,以增加高分子材料的衬度。而锇酸可以使带双键的高分子材料显黑色。

根据自己的要求选择合适的染色剂是观察的关键!

76.什么是亚晶?

亚晶简单的说就是在晶粒内部由小角晶界分隔开的,小角晶界主要由位错构成,相邻的亚晶的晶体取向差很小。

77.FFT图与衍射图有什么对应的关系呢?

它们都是频率空间的二维矢量投影, 都是和结构因子有关的量,都可以用于物相标定,但在衍射物理中含义不同,运算公式不同,不可混为一谈。

FFT是针对TEM图像的像素灰度值进行的数学计算,衍射是电子本身经过样品衍射后产生的特殊排列。

78.调幅结构的衍射图什么样的?

衍射斑点之间有很明显的拉长的条纹。

80.什么是明场、暗场、高分辨像?

在衍射模式下,加入一个小尺寸的物镜光阑,只让透射束通过得到的就是明场像;只让一个衍射束通过得到的就是暗场像;加一个大的物镜光阑或不加,切换的高倍(50万倍以上)成像模式,得到高分辨像。当然能不能得到高分辨像还要看晶带轴方向、样品的厚度和离焦量等是否合适。

看什么样品。

绝大多数是看不出来。

一般情况下普通SEM图不能用来证明一个材料是不是单晶。

但是如果你确定这个材料是多晶材料,可以通过SEM观察晶界。(有可能需要进行一些预处理,比如腐蚀什么的。)

对于陶瓷材料,肯定是多晶,直接掰开就能用SEM看晶界和晶粒大小。对于金属材料,通过腐蚀也可以观察到晶界。对于薄膜材料,腐蚀后也可以观察晶界。

对于金属样品,有一种方法叫:电子背散射衍射。这种方法需要将样品抛光的非常平整,然后可以观察样品表面的结晶方向,不过这种方法分辨率较低。这种方法一般用来分析金属的金相组织,几乎不用来做单晶的定性分析。

坚定单晶最好的方法还是X射线衍射,方便又便宜。SEM判断是否为单晶说服力很差,不过一些样品的SEM图可以看出是否为多晶。SEM一般不作为坚定单晶的依据,如果你通过其他方法证明材料为单晶,可以用SEM图作为佐证。

橡胶与金属等刚性材料相互复合能同时利用橡胶的弹性以及金属的刚性,使橡胶制品获得更高的强度和耐久性。金属对橡胶能起到增强的骨架作用,橡胶则使金属具有减震、抗冲、防腐、绝缘、保护、密封等功能,其结果是刚柔结合,强韧兼备,有着广泛的用途[1]。在减震橡胶工业中,具有骨架的橡胶件得到了广泛的应用,橡胶与金属骨架的组合搭配便于调整橡胶件的强度和刚度,因此用量最大。本公司生产的减震橡胶件产品主要应用于轨道机车等动态的场合,轨道机车长年累月的运行以及所处的复杂的气候与环境因素,对橡胶件的性能提出了苛刻的要求,尤其是橡胶件优异的抗蠕变性能和抗动态疲劳性能是列车安全运行的保障,对于带有骨架的橡胶件,橡胶与骨架的粘合强度成为了满足抗蠕变性能和抗动态疲劳性能的关键,国际铁路行业标准(IRIS)将橡胶与金属的粘合过程定性为特殊工序,要求必须进行严格的技术条件控制,以确保产品的质量。显而易见,粘接是制作橡胶/金属这类复合材料的最重要的工艺环节,因此研究橡胶与骨架的粘合强度具有重要意义,本文根据本公司的产品特点,主要论述了影响橡胶与铁质金属骨架粘合强度的因素。

1.金属骨架的表面处理

为了获得良好的粘接性能及耐环境性能,对金属骨架进行表面处理是非常重要的环节,为保证粘接牢固必须将金属沾染的油脂、锈迹和杂质清除,并适当增加橡胶与金属骨架的粘接面积,金属骨架表面处理的好坏,直接影响橡胶与金属的粘合强度和耐久性。金属骨架的表面处理就是改变其表面状态,获得清洁、干燥、粗糙和具有活性的表面,满足粘合剂浸润、扩散、渗透的要求,提高橡胶与金属的粘合强度和耐久性。金属骨架表面处理包括清除锈蚀、灰尘以及油污等。

1.1骨架的表面抛丸处理

金属骨架表面的锈蚀与灰尘常采用机械处理法,主要有砂纸打毛、钢丝刷打磨、钢丝轮打磨、车削、抛丸和喷砂等。应根据金属骨架的强度、外观要求和骨架材料的硬度选择合适的处理方法,本公司所用的金属骨架材料大多硬度较高,采用抛丸的方法去除锈蚀与灰尘,经过钢丸高速撞击骨架表面,造成骨架表面的晶格扭曲变形,会使骨架表面硬度增高,还会形成许多的微观孔隙,在扫描电镜(SEM)下可以看到经过抛丸处理后的金属表面沟槽遍布,棱角横生[1]。金属表面经抛丸后,由于金属表层的孪生、晶面滑移、晶界滑动以及扩散性蠕变等晶体运动,产生大量凹坑形式的塑性变形,增加表面的粗糙度,以晶界滑动最重要,表层位错密度大大增加,而且出现亚晶和晶粒细化现象,产生塑性变形及组织变化,由不稳定结构向稳定状态转变。

影响和决定抛丸效果的工艺参数包括有:钢丸材料,钢丸形状,钢丸粒径大小及分布比例,钢丸质量,钢丸本体硬度,抛丸的流量、速度、角度,抛射时间,喷嘴(或离心叶轮)至零件表面的距离等等。这些参数都会直接影响零件的抛丸处理效果。

骨架的抛丸处理工艺要点与注意事项有:

①抛丸处理方法不适合骨架板材太薄 (0.6mm 以下)、容易变形的金属骨架。

②在抛丸处理过程中,过度抛丸会使金属骨架表面产生肉眼看不见的微裂纹,使得工件在使用中存在隐患,而且有研究[2]表明过度的抛丸对粘合强度反而不利,因此一定要避免过度抛丸。

③根据需要设置合理的抛丸时间,时间不宜过久,能保证清除表面污物即可,经过长时间抛丸处理,骨架表面污物仍然清除不净时,不应该延长抛丸时间,可考虑其他方法,例如酸蚀处理等。

④抛丸处理过的金属骨架表面粗糙度过大、过小都会使得粘合强度下降,每次抛丸结束都要对骨架进行表面粗糙度检查,以控制抛丸效果。

⑤抛丸所使用的钢丸硬度要适中,硬度低抛丸效果差,钢丸的损耗量大,硬度高会损伤骨架;钢丸的粒径也要适中,通常选用的钢丸的直径在0.6mm~1.0mm为宜。

1.2骨架的表面清洗处理

金属件在储运、切削和加工过程会沾染大量的油污,通过清洗剂对污物的溶解、皂化作用,靠表面活性剂对污物的润湿、渗透和分散等物理作用,使污物溶解、分散,离开金属表面,并让清洗剂占据表面,等清洗剂挥发干净后可以获得洁净的表面。去除骨架表面油污的清洗方法众多,目前使用的清洗溶液主要有下列几类:以汽油、煤油或卤代烃为主的有机溶剂型清洗剂;以酸、碱、盐等化学物质溶液为主进行浸泡清洗的清洗液;以表面活性剂为主要成分的水基清洗剂;以表面活性剂、有机溶剂为主要组分的乳化型清洗剂。但每种方法单独使用时的清洗效果都不够理想,本公司采用的是先溶剂清洗再蒸汽清洗的两步组合方法,效果比较理想。

影响金属骨架表面清洗处理效果的因素很多,情况很复杂,但归纳起来主要有下列几点:

①金属本身的材料种类。不同的金属材料有不同的金属组织结构及表面活性,这会导致对污物的附着力不同,需采用不同的方法。如黑色金属与有色金属有很大的差别。

②金属表面的状态。光滑的表面要比粗糙的表面容易清洗。此外,外形简单的平坦表面要比外形复杂、弯曲、凹凸度大的表面容易清除。

③污物的类别和性质。污物的化学成分、内聚力和流变特性都对金属表面的附着力有很大的影响,在采用清除方法上也有很大的不同。

④表面的污物数量、浓度或厚度等。要考虑表面原有的污物、表面上污物的分布状况、表面清洗后允许的污物残余量等因素。清洗速度是指单位时间内从骨架表面清除掉污物的数量,在清洗过程中清洗速度会发生不断变化,并随着表面污物的减少而降低。一般来说,在整个清洗过程中的前一半时间平均可以清除90%-95%的污物,清除剩下的污物需要消耗后一半的时间,愈到最后愈难清除干净。

⑤清洗的溶液介质。不同的有机溶剂对油脂的清洗作用有很大的不同,不同成分和浓度组成的化学溶液对油污和锈迹的清洗效果有很大的差别。一般来说,溶液的浓度愈大、温度愈高,清洗的效果愈好。

⑥外加的机械物理作用。可以通过增加外力作用提高表面清洗的速度或强化清洗过程。例如,增加搅拌或溶液的流动性,可加速污物的脱落速度;提高溶液介质的压力可以增加溶液的渗透能力使污物脱离表面;增加振动或超声场,可以使污物更容易松动、更快溶入到溶液介质中,大大提高清洗速度和清洗效率。

由此可见,在金属表面清洗中,除了选择有效的溶液清洗介质外,还要根据表面清洁度的要求,进一步采取一些必要的措施才能获得快速、高效、质优的清洗效果。

骨架的清洗处理工艺要点与注意事项有:

①根据油污的性质和特点选择合适的清洗剂,选择的清洗剂应当有较高的去油污能力,同时又有较高的从骨架表面挥发能力。

②溶剂清洗时,清洗液的浓度与清洗效果呈非线性关系,因此通过增加清洗剂浓度提高清洗效果的方法不理想,如果一次清洗效果不好,通常采用二次清洗的方法,不用增加浓度但能够取得良好的效果。

③一次清洗量不宜过多,清洗完的骨架不可直接用手拿取,应当佩戴洁净的手套取件。

④采用“水膜法”检查油污是否去除干净,是一种简便易行可靠的控制清洗效果的方法。

2.粘合方法与工艺

目前常用的橡胶与金属的粘接方法有硬质胶粘接法、镀黄铜粘接法、粘合剂粘接法和直接粘接法[3],粘合剂粘接法因为工艺简单、可靠性高获得了广泛的应用,酚醛树脂、多异氰酸酯和卤化聚合物是粘合剂常用的三大类基体材料。粘合剂体系应用最广泛的是美国的Chemlok系列,分为底涂胶和面涂胶。底涂胶(以Chemlok205为例)的主要成分是酚醛树脂类,可以跟金属表面发生强烈的物理吸附及化学作用生成次价键和化学键,获得较高的粘合强度,面涂胶(以Chemlok220为例)主要成分是卤化聚合物,位于底涂胶和橡胶中间层,通过相互渗透并借助内部添加的高活性交联剂在热硫化过程中在底涂胶/面涂胶和面涂胶/橡胶界面发生交联反应,产生较高的粘合强度。

影响粘接强度的因素较多,主要有以下几个方面:

①粘合剂的极性太高会妨碍湿润过程的进行而导致粘接力降低。分子间作用力是提供粘接力的因素,但不是唯一因素,某些特殊情况下,其他因素也能起主导作用。当液体粘合剂不能很好浸润被粘体表面时,留在空隙中的空气泡就会形成弱界层。又如,当所含杂质能溶于熔融态粘合剂,而不溶于固化后的粘合剂时,会在固化后的粘合剂中形成另一相,被粘体与粘合剂整体间产生弱界面层。这种弱界面层应力松弛和裂纹的发展都会不同,因而极大地影响着材料和制品的整体性能。

②化学键理论认为,粘合剂与被粘物分子之间除范德化作用力外,有时还有化学键产生,例如偶联剂对粘接的作用、硫化橡胶与镀铜金属的粘接界面、异氰酸酯对金属与橡胶的粘接界面等,都会有化学键的生成。化学键的强度比范德华作用力高得多,化学键形成不仅可以提高粘附强度,还可以克服脱附使粘接接头破坏的弊端。

③从物理化学观点看,机械作用并不是发生粘接力的因素,而是增加粘接效果的一种方法。粘合剂渗透到被粘物表面的缝隙或凹凸之处,固化后在界面区产生了啮合力,这些情况类似树根植入泥土的作用,机械连接力的实质是摩擦力。粘合多孔质料、纸张、织物等时,机械连接力是很重要的,但对某些坚实而光滑的外表,这种作用并不显著。

粘合剂的涂刷工艺要点与注意事项有:

①根据不同的骨架材料选择底涂胶,根据橡胶材料的类型选择面涂胶。

②选择合适的稀释剂,根据涂胶工艺和设备状况对粘合剂按合理的比例稀释。

③涂胶作业前要检查粘合剂的比重和粘度是否合格,以保证粘合剂的质量稳定。

④面涂胶作业之前务必保证底涂胶已经彻底干燥,可以采用烘干的方式加快干燥,避免面涂胶(通常与金属的粘合性能不佳)渗透到金属骨架表面影响粘合效果。

⑤一般粘合强度随粘合剂层的厚度增加而增大,但过厚的粘合剂层反而对粘合强度不利,推荐的粘合剂厚度检查标准为底涂胶5~12μm,面涂胶12~25μm,底涂胶与面涂胶的厚度之和17~37μm。

⑥对已经涂过粘合剂的骨架要保护好,隔绝灰尘、空气、水分等的污染,戴洁净手套拿取,防止手指汗水、油脂污染,并远离阳光和UV,并在规定的有效期内使用。

3.橡胶胶料的配方

3.1

橡胶基体的类型

极性较大的橡胶,如丁腈胶和氯丁胶等,易于与金属骨架粘合,采用极性极大的粘合剂,产生较高的次价键结合,就能获得良好的粘接强度;而对于非极性橡胶,如丁苯胶和天然胶等,采用极性或非极性粘合剂,仅仅依靠次价键粘合,很难获得良好粘接,必须在橡胶与粘合剂之间形成主价键结合(交联),才能获得较高的粘合强度[4]。对此,除了改进硫化体系外,采用高活性的粘合剂也是必不可少的。所以通常的不饱和度高、极性高的橡胶易粘接,粘合强度高;饱和度高、非极性的橡胶难粘接,粘合强度也低。通常各种橡胶的粘合强度大小顺序为:NBR>CR>SBR>NR>BR>IIR>EPDM。

3.2

橡胶的补强填充体系

橡胶的粘合强度与橡胶本身的强度密切相关,所以补强剂的用量对粘合强度影响较大,在一定范围内补强剂的用量增加,粘合强度增大,通常硫化胶硬度在邵氏A55~80之间时易粘接,但是硬度在邵氏A45以下时很难得到较高的粘合强度。

白炭黑粒子表面是一个反应活性很强的以硅烷醇结构为特征的酸性面,水分吸附于白炭黑离子的活性面,将水分以液态水的形式固定下来,将水束缚并均匀分布于整个胶料中,减少了水在橡胶与粘合剂之间的界面上富集,阻止了水对粘合结构的破坏。因此,使用白炭黑对粘合是非常有利的。

橡胶中的软化剂、增塑剂以及蜡类的防老剂,在橡胶硫化过程中会迁移到橡胶表面,并渗透到粘合剂层甚至金属骨架表面,减弱粘合剂的次价键吸附作用,对粘合不利。油、增塑剂用量不超过20质量份,酯类增塑剂对粘合影响最显著应低于10质量份,石蜡、芳烃油、烷烃油等填充剂容易喷出,并在橡胶/粘合剂界面富集,阻碍了橡胶/粘合剂的充分反应。因此,在满足使用要求的情况下,应尽量少用或不采用。

3.3橡胶的硫化体系

粘合剂与橡胶之间首先必须能够良好润湿,为产生良好粘合提供有利条件,更重要的是采用适当交联剂,当它移动到粘接界面,并在粘接界面上产生交联时,便会产生主价键结合,产生的粘合强度高。一般而言,不同硫化体系的粘合强度的大小为:常规硫化体系>半有效硫化体系>有效硫化体系>过氧化物硫化体系。胶料的焦烧期长会有利于粘接。

4.硫化工艺

4.1硫化压力

在橡胶硫化、粘合剂固化期间,需要足够的模压使粘合剂与混炼胶紧密接触,橡胶硫化过程中压力的作用为:防止产生气泡,使胶料致密,提高胶料的物理机械性能和制品使用性能,并提高胶料与骨架材料的粘合强度。压力对于粘合强度影响较大,通常而言提高硫化压力可以提高粘合强度,压力达到一定值后即使继续加大压力也不会提高粘合强度。

4.2硫化温度与时间因素

许多研究显示[5-8]:温度对粘合剂与橡胶之间扩散程度有着重要的影响,硫化过程中温度与时间合理组合可达到理想的粘接效果,欠硫和过硫都会降低粘合强度。大多粘合剂起始反应温度为120℃,温度过低达不到粘合剂固化反应的临界温度,温度过高硫化速度过快时,粘合剂的固化速度与橡胶的交联速度不均衡,都得不到理想的粘合强度,一般合理的硫化温度为140~180℃,硫化时间与硫化温度密切相关,高温短时间的硫化不如低温长时间硫化获得的粘合强度高,对天然胶等二烯烃类通用橡胶而言140℃~150℃的温度区间达到正硫化状态时得到的粘合强度较高。

4.3

硫化模具设计

设计硫化模具时,应当确保金属件在模具型腔内取放容易,避免在粘合件的紧要粘合部位设置模具的分型面。如果模具设计从橡胶/金属骨架结合处设置分型面,在分型面处不可避免的存在胶料流动的问题,在硫化初期,橡胶尚未与粘合剂形成充分的共交联,橡胶将在骨架涂粘合剂处移动,影响了橡胶与粘合剂的共交联。如果不得不在涂粘合剂平面处设置模具分型,要保证模具配合紧密,避免模具在该分型面处的配合间隙过大、模具不平或者胶料余量过大,大量胶料从此处溢出将粘合剂冲刷掉,造成粘合失效。

避免模具的注胶口设置在太靠近金属件涂胶面处,否则在橡胶注入模具型腔过程中会冲刷金属件表面所涂的粘合剂,造成局部粘合不良。

避免胶料膨胀造成的粘合失效。胶料在加热硫化时,由于加热而胶料内部形成热膨胀,产生的应力造成了胶料在金属骨架表面的滑移,阻止了胶料与粘合剂的充分反应。这类膨胀在膨胀率大的胶种,如EPDM,表现得尤为突出。一般采用移模注压法、增加跑胶槽,减少胶料的膨胀而带来的应力,防止胶料在金属骨架表面的滑移。同时还必须增加排气次数,以利于胶料溢出。

避免产品硫化前装模时间过长。产生这个原因的因素有很多,如模具复杂,操作工的操作不熟练,胶料门尼粘度太大、流动困难或硫化速度过快等,产品硫化时胶料尚未充满整个模腔的时候,粘合剂已经开始起交联反应。粘合剂与胶料不能充分共交联,从而造成粘合失效。

4.4其他影响因素

与普通模压硫化方式相比,注射成型硫化方式能够获得更高的粘合强度。

硫化之前,对涂粘合剂的金属骨架在一定温度下预热,使粘合剂预固化可以明显增加金属与橡胶的粘合强度。

阎家实[9]研究发现:橡胶与金属硫化过程中电场作用可显著改变粘接性能,当金属件与直流电源的负极接通后硫化胶与金属的粘接强度提高28%~30%,连接橡胶与金属试样的电极换向后粘接强度降低10%~15%。

结束语

在橡胶与骨架这类复合材料的制造上,粘接是最重要的工艺环节之一,粘接涉及多组分体系之间相互作用,导致影响粘接因素错综复杂,不同材质、不同结构的粘接部件其粘接机理与影响粘接的因素各不相同,应针对具体情况给出不同分析,并采取相应有效的措施提高其粘接质量。可以认为,要获得高性能的橡胶/骨架材料复合制品,除了选择合适的骨架材料外,更重要的是所采用的包括骨架的表面处理、橡胶胶料的配合、橡胶硫化工艺、粘合方法与粘合工艺及相关理论在内的的粘合技术,只有每一步都处理得当才能使得制品在苛刻条件下使用时始终保持骨架材料与橡胶合为一体,这些所有的技术过程如链子般环环相扣,每一环节都必须完好才能保证粘合效果,任何一环出现的变化都会导致应用失败,成功的粘接取决于所有过程的完美控制。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/424631.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-26
下一篇2023-05-26

发表评论

登录后才能评论

评论列表(0条)

    保存