R语言中特殊值NaN、Inf 、NA、NULL

R语言中特殊值NaN、Inf 、NA、NULL,第1张

1. NaN

R中的无定义数用NaN表示,即“Not a Number(非数)”。

不过在R中,R实际上是把NaN视作一个数的,当其参与运算时,返回结果总是NaN。我们可以使用is.nan()函数来检测计算结果有无定义,但是需要注意的是,对于NaN而言,is.finite()和is.infinite()都会返回FALSE。

2. NA

NA表示缺失值,即“Missing value”,是“not available”的缩写

3. Inf

R中的无穷大用Inf表示(即Infinity,无穷大),负无穷表示为-Inf。

要检查一个数是否为无穷,可以使用is.finite()或者is.infinite()函数

3. NULL

R语言中,NA代表位置上的值为空,NULL代表连位置都没有,变量为空,其长度为0,表明“空无一物”

将两个数据进行除法运算

而log2_foldchange就是我们需要的数据,发现里面有许多 NaN、 -Inf 、Inf ,想办法进行数据清洗。

都到这一步了,再绘制两个图形玩玩:

R的功能很强大,各种包很多。但就是因为包太多,造成了很大的麻烦。不可避免的,可以做结构方程模型的包也不少,例如:sem、psych、OpenMx,lavaan等。我选择了lavaan包。原因:语法简介易懂,上手快,支持非正态、连续数据,可以处理缺失值。

lavaan包是由比利时根特大学的Yves Rosseel开发的。lavaan的命名来自于 latent variable analysis,由每个单词的前两个字母组成,la-va-an——lavaan。

为什么说它简单呢? 主要是因为它的lavaan model syntax,如果你会R的回归分析,那它对你来说再简单不过了。

一、语法简介

语法一:f3~f1+f2(路径模型)

结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了lavaan model syntax的语法一。

语法二:f1 =~ item1 + item2 + item3(测量模型)

"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。

语法三:item1 ~~ item1 , item1 ~~ item2

"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差

语法四:f1 ~ 1

表示截距

此外还有其它高阶的语法,详见lavaan的help文档,一般的结构方程建模分析用不到,就不再列出。

二、模型的三种表示方法

以验证性因子分析举例说明,对于如下图所示的模型:

方法一:最简化描述

只需指定最基本的要素即可,其他的由函数自动实现,对模型的控制力度最弱。只使用于函数cfa()和sem()

model<-'visual=~x1+x2+x3 textual=~x4+x5+x6 speed=~x7+x8+x9' fit <- cfa(model, data = HolzingerSwineford1939)

需要注意的是,这种指定模型的方式在进行拟合时,会默认指定潜变量的第一个测量变量的因子载荷为1,如果要指定潜变量的方差为1,可以:

model.bis <- 'visual =~ NA*x1 + x2 + x3 textual =~ NA*x4 + x5 + x6 speed =~ NA*x7 + x8 + x9 visual ~~ 1*visual textual ~~ 1*textual speed ~~ 1*speed'

方法二:完全描述

需要指定所有的要素,对模型控制力最强,适用于lavaan()函数,适合高阶使用者

model.full<- ' visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 x1 ~~ x1 x2 ~~ x2 x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 visual ~~ visual textual ~~ textual speed ~~ speed visual ~~ textual +speed textual ~~ speed' fit <- lavaan(model.full, data = HolzingerSwineford1939)

方法三:不完全描述

最简化和完全描述的混合版,在拟合时增加 auto.* 参数,适用于lavaan()函数

model.mixed<- '# latent variables visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 # factor covariances visual ~~ textual + speed textual ~~ speed' fit <- lavaan(model.mixed, data = HolzingerSwineford1939, auto.var = TRUE)

可以设定的参数详见help帮助文档

PS:可以在lavaan()函数里设置参数mimic="Mplus"获得与Mplus在数值和外观上相似的结果,设置mimic="EQS",输出与EQS在数值上相似的结果

三、拟合结果的查看

查看拟合结果的最简单方法是用summary()函数,例如

summary(fit, fit.measures=TRUE)

但summary()只适合展示结果,parameterEstimates()会返回一个数据框,方便进一步的处理

parameterEstimates(fit,ci=FALSE,standardized = TRUE)

获得大于10的修正指数

MI<- modificationindices(fit) subset(MI,mi>10)

此外,还有其他的展示拟合结果的函数,功能还是蛮强大的

四、结构方程模型

(1)设定模型

model<- ' # measurement model ind60 =~ x1 + x2 +x3 dem60 =~ y1 + y2 + y3 + y4 dem65 =~ y5 + y6 + y7 + y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # redisual covariances y1 ~~ y5 y2 ~~ y4 +y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'

(2)模型拟合

fit <- sem(model, data = PoliticalDemocracy) summary(fit, standardized = TRUE)

(3)给回归系数设置标签

给回归系数设定标签在做有约束条件的结构方程模型时会很有用。当两个参数具有相同的标签时,会被视为同一个,只计算一次。

model.equal <- '# measurement model ind60 =~ x1 + x2 + x3 + dem60 =~ y1 + d1*y2 + d2*y3 + d3*y4 dem65 =~ y5 + d1*y6 + d2*y7 + d3*y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # residual covariances y1 ~~ y5 y2 ~~ y4 + y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'

(4)多组比较

anova(fit, fit.equal)

anova()会计算出卡方差异检验

(5)拟合系数

lavaan包可以高度定制化的计算出你想要的拟合指标值,例如,我想计算出卡方、自由度、p值、CFI、NFI、IFI、RMSEA、EVCI的值

fitMeasures(fit,c("chisq","df","pvalue","cfi","nfi","ifi","rmsea","EVCI"))

(6)多组结构方程

在拟合函数里面设置 group参数即可实现,同样的可以设置group.equal参数引入等式限制

五、作图

Amos以作图化操作见长,目前版本的Mplus也可以实现作图,那R语言呢,自然也是可以的,只不过是另一个包——semPlot,其中的semPaths()函数。

简单介绍一下semPaths()中的主要函数

semPaths(object, what = "paths", whatLabels, layout = "tree", ……)

(1)object:是拟合的对象,就是上文中的“fit”

(2)what:设定图中线的属性, 默认为paths,图中所有的线都为灰色,不显示参数估计值;

semPaths(fit)

若what设定为est、par,则展示估计值,并将线的颜色、粗细、透明度根据参数估计值的大小和显著性做出改变

semPaths(fit,what = "est")

若设置为stand、std,则展示标准参数估计

semPaths(fit,what = "stand")

若设置为eq、cons,则与默认path相同,如果有限制等式,被限制的相同参数会打上相同的颜色;

(3)whatLabels:设定图中线的标签

name、label、path、diagram:将边名作为展示的标签

est、par:参数估计值作为边的标签

stand、std:标准参数估计值作为边的标签

eq、cons:参数号作为标签,0表示固定参数,被限制相同的参数编号相同

no、omit、hide、invisible:隐藏标签

(4)layout:布局

主要有树状和环状两种布局,每种布局又分别有两种风格。

默认为“tree”,树状的第二种风格如下图,比第一种看起来舒服都了

semPaths(fit,layout = "tree2")

第一种环状

semPaths(fit,layout = "circle")

额,都揉成一团了!

试试第二种风格

semPaths(fit,layout = "circle2")

还好一点。如果把Rstudio默认的图片尺寸设计好,作图效果会更棒。

还有一种叫spring的布局,春OR泉?

semPaths(fit,layout = "spring")

看起来跟环状的很像。

详细内容可以阅读以下文献,以及相应的help文档:

[1]Rosseel Y. lavaan: An R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1-36.

cronbach’s alpha系数,一般翻译成克隆巴赫alpha系数,效度用探索性因子分析(KMO和Bartlett)。

alpha等于 测验题目数/(测验题目数-1) 乘 {1 - 各被试在该题目上的方差的和 / 所有被试总分的方差 }

K即第一个公式的n,代表题目数量。

小sigma方即第一个公式的S方,代表方差。

然后直接调用就可以。

参考文献:

道客巴巴

qq_43157351. R语言与克朗巴哈alpha系数

用R语言实现Cronbach 值的计算

λi表示题目i在潜变量ξ上的负荷, δi是误差项, 误差之间不相关。整个测验分数X=x1+x2+…xp的合成信度如上图 (叶宝娟, 温忠麟, 2011Brown, 2006Yang&Green, 2010)

假设一个单维测验由p个题目组成, 测量了一个因子F, 测验施测后, p个题目的标准化变量为 (i=1, 2, ..., p) ,可以按照以下方式计算。

其中, εi是只和i有关的特殊因子 (也称为误差项) , λi是第i个变量i在因子F上的负荷。假设题目误差不相关, 如果整份测验的分数相加有意义, 则单维测验整份测验X=1+2+...+p的合成信度为:

其中, θi为i的误差方差, (2) 式也可计算多维测验单个维度的合成信度。如果用固定方差法指定因子测量单位, 即var (F) =1, 则上式变为:

因为X i 是标准化变量, 所以Σ θ=p-Σ λ2则 (3) 式变为:

上图这个表达式更易懂一些,也更容易计算。

λ为因子载荷量,p为题目个数。

计算出因子载荷量之后可以通过函数计算ρ

参考文献:

杨强 叶宝娟 温忠麟(2014). 用SPSS软件计算单维测验的合成信度. 中国临床心理学杂志: 22(03), 496-498

温忠麟(2011). 单维测验合成信度三种区间估计的比较.

一、内在效度(content related validity):研究者的发现与事实相符合的程度,即研究结果是不是真的在测量事实的真相的能力。

二、内容效度的评估方法 :1.专家判断法2.统计分析法(评分者信度\复本信度\折半信度\再测法)3.经验推测法 (实验检验)

提高内部效度的方法:

1.三角检定法:多元的搜集资料方式,包括不同的资料来源(报章、官方文件、会议记录),访谈不同人员(如教师、行政人员、学者专家),及采用不同资料的搜集方法(如访谈、观察、非正式讨论)等,来相互验证资料与实施的相符程度。

2.研究对象的核查:和被研究者一起讨论定稿,以确定自己记录的是其所叙的。

3.持续的观察

来自:qiuyaofeng2012. 信度和效度经典例子_第四节个案研究的效度与信度. CSDN

一、构想效度:测验能够测量到理论上的构想或特质的程度,即测验的结果是否能证实或解释某一理论的假设、术语或构想,其解释的程度如何。

二、构想效度的估计方法:1. 对测验本身的分析(用内容效度来验证构想效度);2. 测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法 ;3. 效标效度的研究证明 ;4. 实验法和观察法证实

衡量测验有效性的参照标准,指的是可以直接而且独立测量的我们感兴趣的行为。

又称 实证效度 ,反映的是测验对个体的预测在某种情境下的有效性程度(所测情况与实际情况之间的相关)。

根据效标资料是否与测验分数同时获得,又可分为 同时效度 (实际士气高和士气低的人在士气测验中的得分一致性。)和 预测效度 两类。

1.相关法:效度系数、效标效度常用方法。以皮尔逊积差相关系数来表示,反映测验分数与效标测量之间的相关程度。

当测验成绩是连续变量,而效标资料是二分变量时,计算效度系数可用点二列相关公式或二列相关公式;

当测验分数为连续变量,效标资料为等级评定时,可用贾斯朋多系列相关公式计算。

2.区分法:检验 测验分数 能否有效地区分 由效标所定义的团体

进行t检验,若差异显著,说明该测验能够有效地区分由效标定义的不同团体(如抑郁 测验得分 的高低可以区分出 真正的 高抑郁组和 真正的 低抑郁组),

重叠百分比可以通过计算每一组内得分超过(或低于)另一组平均数的人数百分比得出;

另外,还可以计算两组分布的共同区的百分比。重叠量越大,说明两组分数差异越小,即测验的效度越差。

3.命中率法:是当测验用来做取舍的依据时,用其正确决定的比例作为效度指标的一种方法。命中率的计算有两种方法,一是计算总命中率,另一种是计算正命中率。

4、预期表法:是一种双向表格,预测分数排在表的左边,效标排在表的顶端。从左下至右上对角线上各百分数字越大,而其它的百分数字越小,表示测验的效标效度越高 ;反之,数字越分散,则效度越低。

命中率法和预期表法相似。详细可参照戴海琦,张锋<心理与教育测量>第五章:测量效度

一般在研究中用到的效度指标是结构效度,测量题与测量变量之间的对应关系。可以使用探索性因素分析(exploratory factor analysis,EFA)和验证性因子分析(comfirmatory factor analysis,CFA)

计算协方差矩阵/相关系数矩阵。可以利用cov2cor()将协方差转化为相关系数矩阵,也可利用cor2cov()转化回来

· KMO值:如果此值高于0.8,则说明效度高;如果此值介于0.7 0.8之间,则说明效度较好;如果此值介于0.6 0.7,则说明效度可接受,如果此值小于0.6,说明效度不佳

· 巴特球形检验:其对应巴特球形值,对应P值一定需要小于0.05,这样才能说明通过巴特球形检验

· 特征根:此值是判断因子(维度)个数的标准的信息量,由于已经设置好因子(维度)个数,因而此值意义较小可忽略;

· 方差解释率值:代表各维度可解释整体量表的信息量;

· 累积方差解释率值:所有维度可解释整体量表的信息量;

· 因子载荷系数值:分析项与维度之间的相关关系情况;此值非常非常重要,可用于判断分析项与维度的对应关系情况,下述会有说明;

· 共同度值:分析项可以被提取出的信息量情况,比如为0.617,可以理解为该项有61.7%的信息可被最终提取出来。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/436019.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-28
下一篇2023-05-28

发表评论

登录后才能评论

评论列表(0条)

    保存