1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
参考资料:百度百科-扫描电子显微镜
本发明公开一种水热法制备纳米氧化锌的方法。步骤为:以木质素磺酸盐为表面活性剂,利用硝酸锌和氢氧化钠反应水热法制备纳米氧化锌。木质素磺酸盐是亚硫酸法制浆的副产品,其含有丰富的官能团,有良好的扩散性。本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。【专利说明】一种水热法制备纳米氧化锌的方法
【技术领域】
[0001]本发明涉及一种水热法制备纳米氧化锌的方法,特别涉及以木质素磺酸盐为表面活性剂制备纳米氧化锌的方法。
【背景技术】
[0002]近年来,半导体材料由于其广泛的应用而得到了深入的研究。具有宽的禁带(337eV)和大的激子结合能(60eV)的 氧化锌,是一种同时拥有半导体和压电特性以及由此导致各种独特性质的材料。纳米氧化锌作为一种新型功能型纳米材料,与传统氧化锌材料相比,它具有比表面积较大、化学活性较高、产品粒度为纳米级等优点。由于纳米材料所特有的表面效应、量子尺寸效应和宏观量子隧道效应等,使得纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面比一般氧化锌产品无法比拟的特殊性能和新用途,可用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压敏材料、压电材料、高效催化剂等,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前
旦
-5^ O
[0003]水热法又称为热液法,是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热,产生一个高温高压的环境,加速离子反应和促进水解反应,在水溶液或蒸气流体中制备氧化物,再经过分离和热处理得到氧化物纳米粒子,可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。
[0004]
【发明内容】
本发明的目的是采用木质素磺酸盐为表面活性剂,通过水热法合成纳米氧化锌,工艺简单,原料易于得到,成本低廉,污染较少,适于工业化生产。
[0005]本发明的技术方案如下:
A、室温下取浓度为0.1 mol.1的锌盐溶液,按每50mL锌盐溶液加入0.05-0.2g木质素磺酸盐,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;
B、将上述溶液移入高压釜中,在100-200°C温度下反应10-22h,冷却至室温;
C、将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;
D、将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C; 本发明的一个较优公开例中,所述的木质素磺酸盐是木质素磺酸钠。
[0006]本发明的一个较优公开例中,所用的锌盐为Zn (NO3) 2。
[0007]本发明的一个较优公开例中,步骤A中按每50mL锌盐溶液加入0.1_0.15g木质素
磺酸盐。[0008]本发明的一个较优公开例中,步骤B中在高压釜中150°C温度下反应14_18h。
[0009]本实验所用的试剂皆为分析纯,均为市售。
[0010]有益效果
本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。
【专利附图】
【附图说明】
[0011]图1样品的X射线衍射图谱(XRD),为实施例2样品的XRD图谱。
[0012]图2样品的扫描电镜图(SEM),为实施例1样品的SEM图。
[0013]【具体实施方式】
下面结合具体实施实例对本发明做进一步说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
[0014]实施例1
室温下取浓度为0.1 mo l.L-1的Zn (NO3) 2溶液,按每50mL Zn (NO3) 2溶液加入0.2g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应18h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。样品的SEM图如图2。
[0015]实施例2
室温下取浓度为0.1 mol.L—1的211_3)2溶液,按每501^ Zn (NO3) 2溶液加入0.1g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应22h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。样品的XRD图如图1。
[0016]实施例3
室温下取浓度为0.1 mol.L—1的211_3)2溶液,按每501^ Zn (NO3) 2溶液加入0.1g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应10h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。
实施例4
室温下取浓度为0.1 mol.L-1的Zn (NO3) 2溶液,按每50mL Zn (NO3) 2溶液加入0.05g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在150°C温度下反应14h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。
实施例5
室温下取浓度为0.1 mol.L-1的Zn (NO3) 2溶液,按每50mLZn (NO3) 2溶液加入0.2g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在200°C温度下反应18h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。
实施例6
室温下取浓度为0.1 mol.L-1的Zn(NO3)2溶液,按每50mL Zn(NO3)2溶液加入0.15g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应14h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。
【权利要求】
1.一种水热法制备纳米氧化锌的方法,按下述步骤进行: A、室温下取浓度为0.1 mo 1.L—1的锌盐溶液,按每50mL锌盐溶液加入0.05-0.2g木质素磺酸盐,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止; B、将上述溶液移入高压釜中,在100-200°C温度下反应10-22h,冷却至室温; C、将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离; D、将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。
2.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于所述的木质素磺酸盐是木质素磺酸钠。
3.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤A中所述的锌盐为Zn (NO3) 2。
4.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤A中按每50mL锌盐溶液·加入0.1-0.15g木质素磺酸盐。
5.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤B中在高压釜中150°C温度下反应14-18h。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)