二硫化钼与锌镍合金镀层再什么样的环境下发生氧化

二硫化钼与锌镍合金镀层再什么样的环境下发生氧化,第1张

您好,上海 固体润滑为您解答

二硫化钼一般是有两种用法。

作为一种润滑脂的添加剂,加在一些润滑脂里面使用,增加耐磨性能。作为固体润滑涂层,其实是一种

另外一种是直接作为固体润滑涂层,在零部件表面进行表面处理,降低零件的摩擦系数和增加零部件的耐磨性。

无论哪种用途,必须了解二硫化钼的自身属性。其实二硫化钼的工作温度为-220°C~450°C。超过450°C润滑性能消失,原因就是开始氧化。所以不清楚你提问的锌镍合金镀层有什么关系?但是一般二硫化钼是在超过450°C的常压环境下就开始发生氧化。但是如果真空环境下能够更加久。

图片是二硫化钼的化学性能,参考资料如下:http://www.gutirunhua.com/TCZX/test1

二硫化钼的工作温度最高到450°C,但是二硫化钼的防腐性能比较好,一般不会由于气候和湿度产生氧化问题!

如果您想了解更多,可以去百 度搜索下,上海 固体润滑,我们专门进行二硫化钼固体润滑涂层加工,还有WS2等。希望能帮到您,谢谢!

喜欢就 关注我们吧,订阅更多最新消息

第一作者:李红红(东北石油大学)、杨泽宁(东南大学)

通讯作者:李智君 教授(东北石油大学)

通讯单位:东北石油大学

论文DOI:10.1002/smll.202201092

全文速览

东北石油大学李智君团队发展了一种自还原策略,在具有S空位的MoS2纳米片表面成功制备铁单原子催化剂(FeSA/MoS2)。结合DFT和一系列先进表征证实了孤立的铁单原子位于钼原子顶部,并与相邻的三个硫原子配位。该单原子催化剂在温和条件下对苯甲醇选择性氧化展现出优异的催化活性,转化频率(TOF)高达2105 h-1。此外,它具有良好的可循环利用性、贮存稳定性和底物耐受性。本工作以DFT计算为依据,深入研究了Fe单原子与载体MoS2之间强的相互作用,揭示了苯甲醇在选择性氧化为苯甲醛反应中的催化机理。本工作为设计高效、低成本的醇氧化单原子催化剂提供了思路。

背景介绍

醛和酮类化合物是合成精细化学品的关键中间体,广泛应用于化工、医药、香料等领域。该类化合物大多数是由醇的氧化反应制备,但通常使用昂贵且有毒的氧化剂,反应效率低下。虽然贵金属基催化剂对该反应表现出优异的催化活性,但其高昂的价格和稀缺的资源极大地限制了其广泛的应用。因此,开发高效的非贵金属多相催化剂体系具有重要意义。

近年来,单原子催化剂已成为材料科学和催化科学的前沿领域,这类催化剂具有高原子利用率、独特的量子尺寸效应和可调控的电子环境,在各类催化反应中表现出超高的活性和选择性。而二维过渡金属化合物由于存在多个电子自由度、可调控的带隙结构和优异的电子迁移率,为单原子催化剂的设计带来了新思路。鉴于此,作者利用自还原策略在缺陷MoS2表面制备了一种高活性的FeSA/MoS2单原子催化体系用于醇的选择性氧化。

本文亮点

1. 利用自还原策略在具有S空位的MoS2表面成功制备Fe单原子催化剂。

2. DFT计算表明含缺陷的MoS2可以在原子水平上锚定Fe单原子。

3. 该单原子催化剂在苯甲醇氧化反应中的高活性可归因于其独特的配位环境及电子结构。

图文解析

图1. FeSA/MoS2的合成路线及形貌表征

图1a为FeSA/MoS2的合成示意图。首先通过溶剂热法合成MoS2并进行H2O2处理得到具有S空位的MoS2,以FeCl3为铁源,通过浸渍、MPS等处理得到Fe单原子催化剂。SEM和TEM(图1b、c)可观察到催化剂为片状。球差电镜(图1e)给出了Fe原子存在的初步证据,EDS Mapping(图1f)可观察到Fe、S、Mo元素均匀分布于催化剂表面。

图2. 原子级别结构分析

XRD结果可排除大尺寸Fe纳米粒子的存在(图 1a);XANES结果(图2d)表明催化剂中Fe原子的价态位于Fe2+和Fe3+之间;傅里叶变换结果表明催化剂中存在Fe-S键,无Fe-O及Fe-Fe键(图2e)。经拟合得到铁原子与周围硫原子的配位数为3.1(图2f)。WT-EXAFS(图2g)进一步排除Fe纳米团簇的存在。图i和j表明Fe单原子的引入改变了催化剂的电子结构,更有利于对氧气的活化。

图3.催化性能测试

FeSA/MoS2在苯甲醇选择性氧化成苯甲醛方面具有优异的催化活性(1 atm O2 、120 ºC),在接近100 %的转化率下具有99 %的选择性。转化频率高达2105 h-1。该催化剂在温和条件下达到了较高的催化效果,优于大部分已报道的催化剂体系。动力学结果表明,FeSA/MoS2的 E a值比Fe NPs/MoS2和defective MoS2要低得多,表明Fe单原子的引入可显著降低催化反应能垒,提高催化剂催化活性。

图4. DFT计算结果

DFT计算表明孤立分散的Fe原子位于Mo顶位并形成独特的Fe1-S3配位结构。Bader电荷及DOS揭示了FeSA/MoS2中的电荷转移及其具有高催化剂活性的原因。

图5. 催化反应机理研究

密度泛函理论表明Fe1-S3配位结构的引入可显著降低苯甲醇选择氧化的反应能垒。这种较低的能垒和适中的吸附/脱附行为是FeSA/MoS2对该反应具有高效催化能力的本质原因。

表1. 底物拓展

鉴于FeSA/MoS2对苯甲醇氧化反应的高催化活性,作者评价了28种具有不同官能团的芳香醇和直链醇,均表现出较高的活性和选择性,具有较好的底物拓展能力。

总结与展望

本工作发展了一种简单的自还原策略在MoS2纳米片上构筑Fe单原子催化剂。利用球差校正电镜、XAFS等先进表征技术,揭示了单原子Fe的配位环境和电子结构。该催化剂在苯甲醇选择性氧化制苯甲醛中具有较高的催化能力,具有良好的稳定性、可回收性和底物拓展能力。DFT计算表明,FeSA/MoS2这种独特的Fe1-S3配位结构是其具有高催化活性的关键。该研究通过自发还原策略,在原子水平上为设计制备高效率、低成本、长寿命的单原子催化剂提供了新的思路。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/448696.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-01
下一篇2023-06-01

发表评论

登录后才能评论

评论列表(0条)

    保存