简述稀土元素的研究意义

简述稀土元素的研究意义,第1张

日本是稀土的主要使用国,目前中国出口的稀土数量居全球之首 稀土作为许多重大武器系统的关键材料,美国几乎都需从中国进口(某些程度上是战略的储备)。 稀土是中国最丰富的战略资源,它是很多高精尖产业所必不可少原料,中国有不少战略资源如铁矿等贫乏,但稀土资源却非常丰富。 在当前,资源是一个国家的宝贵财富,也是发展中国家维护自身权益,对抗大国强权的重要武器。中国改革开放的总设计师邓小平同志曾经意味深长地说:“中东有石油,我们有稀土。”稀土是一组同时具有电、磁、光、以及生物等多种特性的新型功能材料, 是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业, 如农业、化工、建材等起着重要作用。稀土用途广泛, 可以使用稀土的功能材料种类繁多, 正在形成一个规模宏大的高技术产业群, 有着十分广阔的市场前景和极为重要的战略意义。有“工业维生素”的美称。

在军事方面

稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,以及能够对敌人肆无忌惮地公开杀戮,正缘于稀土科技领域的超人一等。

在冶金工业方面

稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。

在石油化工方面

用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。

在玻璃陶瓷方面

稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显象管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。

在新材料方面

稀土钴及钕、铁、硼永磁材料,具有高剩磁、高矫顽力和高磁能积,被广泛用于电子及航天工业;纯稀土氧化物和三氧化二铁化合而成的石榴石型铁氧体单晶及多晶,可用于微波与电子工业;用高纯氧化钕制作的钇铝石榴石和钕玻璃,可作为固体激光材料;稀土六硼化物可用于制作电子发射的阴极材料;镧镍金属是70年代新发展起来的贮氢材料;铬酸镧是高温热电材料;近年来,世界各国采用钡钇铜氧元素改进的钡基氧化物制作的超导材料,可在液氮温区获得超导体,使超导材料的研制取得了突破性进展。 此外,稀土还广泛用于照明光源,投影电视荧光粉、增感屏荧光粉、三基色荧光粉、复印灯粉;在农业方面,向田间作物施用微量的硝酸稀土,可使其产量增加5~10%;在轻纺工业中,稀土氯化物还广泛用于鞣制毛皮、皮毛染色、毛线染色及地毯染色等方面。

农业方面作用

研究结果表明,稀土元素可以提高植物的叶绿素含量,增强光合作用,促进根系发育,增加根系对养分吸收。稀土还能促进种子萌发,提高种子发芽率,促进幼苗生长。除了以上主要作用外,还具有使某些作物增强抗病、抗寒、抗旱的能力。 大量的研究还表明,使用适当浓度稀土元素能促进植物对养分的吸收、转化和利用。玉米用稀土拌种,出苗、拔节比对照早1~2天,株高增加0.2米,早熟3~5天,而且籽粒饱满,增产14%。大豆用稀土拌种,出苗提早1天,单株结荚数增加14.8~26.6个,3粒荚数增多,增产14.5%~20.0%。喷施稀土可使苹果和柑橘果实的Vc含量、总糖含量、糖酸比均有所提高,促进果实着色和早熟。并可抑制贮藏过程中呼吸强度,降低腐烂率。

“中国对西方发动稀土战”的论调就在西方满天飞。稀土这种分布在世界多国的资源,被描述成中国要挟他国的“独门武器”。德国《每日镜报》援引一名德国经济界驻京代表的话说,中国人玩稀土就像当年欧佩克玩石油一样;美国《新闻周刊》则称,稀土是高悬于中国贸易伙伴头上的“达摩克利斯之剑”。 1,日本。是渲染稀土荒担忧论调声音最大的,没有稀土资源,却身为世界稀土消费大国的日本。虽然它已廉价从中国购买、储备了能用20年的稀土,但仍然大张旗鼓地迈开了全球寻找稀土廉价供应商的脚步。近期,日本外交官的身影频繁穿梭于印度、越南、蒙古、哈萨克斯坦,这些国家有个共同点:拥有或可能拥有稀土。日本迅速同欧美组成“抗议阵营”,日媒指责中国的稀土战略,同俄罗斯玩弄天然气管道的手法如出一辙,是彻头彻尾的“资源武器化”。并搬出WTO规则来大肆制造国际舆论,目的恐怕不仅是想迫使中国在稀土出口上对日实质让步,而是要借此在国际舆论中将中国孤立化。 2,美国。美国稀土生产商近期表示,计划在2012年年底前,将集团在美国的稀土年产量大幅提升至2万吨,并以中国的一半价钱,抢占1/6市场。美国稀土生产商指出,从中国装运出口的稀土数量肯定减少。为打破中国控制稀土供应的局面,美国在加州的矿场计划于明年1月1日动工增产,项目将耗资5.11亿美元。美国能源部助理部长9月30日表示,重要资源供应源的多元化势在必行。 3,欧盟。据路透报道,欧盟贸易专员Karel De Gucht周三表示,他将在下月与中国举行会谈时向该国施压,要求其保证稀土供应,尽管尚无确凿的证据显示中国限制稀土出口已损及欧洲的相关产业。他表示,“如果需要,我们肯定会向世界贸易组织提出投诉,但直至目前,尚无确凿的证据显示欧洲企业因此受到影响。” 4,印日合作。印度总理辛格在日本访问向媒体透露,在中国减少对日稀土出口、中日关系面临考验时,印度将利用“大好机会”,促进与日本在稀土贸易及其它方面的合作。印度前外交官员则称,印日合作,可把中国“将死”。 5,真正目的。“事实上,除铁矿石之外,世界对于石油、煤炭资源的争夺仍然十分激烈,惨烈程度远远大于对稀土的争夺。”中国商务部研究院日本问题专家唐淳风说,一些西方国家渲染“稀土大战“其实是没影儿的事”。 一位中国专家称,不要把稀土和其他的一些金属资源以及石油,放在一起类比,它们并不一样。全球一年只需要12万吨,这是非常小的用量,其中还有很多是被有战略远见的国家储备起来的,稀土根本就不是像铁、铜、铝、石油这样大量消耗的资源,而是像味精一样稍用一点就能发挥巨大作用的战略元素。这位专家说,真正需要的那些应用强国,早就以低价大量储备了中国的稀土,所以现在中国对稀土的调控,根本不会威胁到它们。它们大肆炒作,其实是想让中国继续以不合理的廉价,供给他们稀土;同时消耗中国具有独特优势的战略资源,等到中国优势转为弱势,他们就会以极为昂贵的价钱反卖给中国。这正是几个稀土进口大国与中国较量的手法。有日本专家也认为,目前以日本为突出代表的国家,大造寻找或重启稀土开发的势头,不排除是为了牵制中国的一种姿态。 那些用资源换取政治利益,换取美国的战略支持的国家,将很快会发现自己陷于战略被动。 英国《每日电讯报》题为“稀土争端:一些大实话”的文章为中国说了些公道话。文章引述分析人士的话说,稀土一直都太便宜,世界需要习惯这些材料变得更贵,特别是中国本土工业开始使用更多的稀土,“这是中国在价值链上攀升的结果,也再度说明中国影响世界之大”。 稀土对水泥熟料烧成的矿化作用及其尾矿应用研究 本项目针对江西特有的稀土资源,选用南方稀土矿中丰度较大的Ce、Y、La、Nd等四种稀土氧化物作为研究对象,探讨它们对水泥熟料烧成的矿化作用,并以赣南较典型的稀土选矿尾矿作原料代替粘土配料制备水泥生料,研究其对水泥熟料矿物形成和熟料性能的影响。 通过化学分析、差热分析、ICP-AES分析及X-射线衍射、晶相显微镜、扫描电镜等现代分析手段,系统地研究了原料的特征,稀土氧化物和稀土尾矿对水泥生料中碳酸盐分解、生料易烧性、熟料矿物形态及组成以及水泥力学性能的影响。研究结果表明,稀土氧化物对碳酸盐的分解影响不大,对生料的易烧性有改善作用稀土氧化物能促进熟料中A矿的形成和矿物的发育,有利于熟料中矿物结晶尺寸和分布均匀,但部分稀土在掺量过量时可能造成矿物的熔蚀,影响矿物的水化活性在煅烧良好的条件下,稀土氧化物和尾矿对熟料强度有增进作用,对水泥凝结时间影响较小。掺加尾矿的试样由于含砂量较高,生料的易烧性低于粘土配料的生料,通过增加原料的粉磨细度可使易烧性得到进一步改善利用稀土尾矿代替粘土配料能烧制性能优良的硅酸盐水泥熟料。 利用SEM-EDS分析了稀土氧化物在熟料中的分布并结合熟料的岩相分析...

Y加入到镁合金中可明显细化组织的晶粒大小。白云等[1]研究了Y对铸造镁合金Mg-6Zn-3Cu-0.6Zr的微观组织和力学性能的影响,结果表明:由于Y的加入,试样组织的平均晶粒尺寸有效减小(由 57 μm 降为 39 μm)。

Y可以提高镁合金的耐腐蚀性能。齐伟光等[2] 研究了Y对AZ91D镁合金微观组织和腐蚀性能影响,结果表明:结果表明:AZ91D镁合金加入Y后,显微组织主要由α-Mg基体相、B相Mg17Al12、Al2Y相和Al6Mn6Y相组成。加入1%Y能显著降低合金的腐蚀速度,提高合金的平衡电位和腐蚀电位,降低腐蚀电流。

Y可以明显提高镁合金的力学性能。李建平等[3]在高强韧铸造镁合金显微组织和性能的研究中,研究了不同稀土Y含量(O%、1.2%、2.2%、3.2%和4.2wt%)对GZKl000镁合金的显微组织及其室温拉伸性能和物理性能的影响在GZKl000合金中加入Y元素(0~4.2%wt)可以提高铸卷GZKl000的抗拉强度,其延伸率也相应有所提高,当Y含量为3.2%wt时,其抗拉强度和延伸率都达到最大,抗拉强度达到237MPa,延伸率达到7.2%;经过固溶时效处理后合金的显微组织由经过固溶时效处理后合金的显微组织由α-Mg、Mg5Gd和Mg24Y5组成α-Mg、Mg5Gd和Mg24Y5组成。 Ce加入到镁合金中,可以明显细化组织晶粒。黎文献等[4]研究了Ce对Mg-Al镁合金晶粒尺寸的影响,。在Mg-Al系AZ31合金中添加微量稀土元素Ce,可明显细化合金晶粒,当Ce的加入量为了0.8%时,晶粒细化效果最好,由未细化前的约300 u m下降到约20~40μm。Ce在镁及镁合金中的细化作用是由于稀途元素在凝固过程中固/液界面前沿富集而引起成分过冷,过冷区形成新的形核带而形成细等轴晶。凝固过程中溶质再分配造成固液界面前沿成分过冷度增大是稀土元素细化镁及镁合金的主要机理。此外,稀土在固/液界面前沿的富集使其起到阻碍α-Mg晶粒长大的作用,进一步促进了晶粒的细化。

Ce可提高镁合金的抗氧化燃烧性。赵洪金等[5]研究了稀土元素Ce对AZ91D镁合金燃点的影响:利用自行开发的温度采集系统,测试了加入少量稀土元素Ce的块状AZ91D镁合金及其熔体在加热过程中表面与心部的温度.时间曲线。随Ce含量的增加,氧化点与燃烧点均呈上升趋势。w(Ce)=1%时,氧化点与燃烧点的平均值较AZ91D的分别提高了33℃和61℃。

Ce可以改善镁合金的力学性能。陈芙蓉等[6]研究了Ce对AZ91D镁合金组织和力学性能的影响。Ce加入到镁合金组织后,细化合金组织起到细晶强化作用;使网状的β相细小并弥散分布于晶界上;同时在晶界形成弥散分布的Al4Ce化合物起到第二相强化作用,当Ce含量为0.69%时,含金的抗拉强度、屈服强度、伸长率及硬度分刺比AZ91D镁合金提高15.8%、8.7%、140%及15.7%,其综合力学性能达到最佳。

Ce能够改善镁合金的耐腐蚀性能。杨洁等[7]研究了Ce对AZ91镁合金微观组织及耐蚀性的影响,结果表明:Ce细化了合金的微观组织,使β—Mg17Al12相变得断续、弥散,成分分布更为均匀,生成了A14Ce相及Mg—Al—Mn—Ce—Fe的金属间化合物;稀土Ce使合金在3.5%NaCl溶液中的自腐蚀电位升高,与Al、O生成了不连续的保护性氧化膜,提高了合金的耐腐蚀性能;添加0.5%Ce时合金的耐蚀性最佳。 Z.L. Ning等研究了Nd对Mg–0.3Zn–0.32Zr 合金微观结构和力学性能的影响。

当合金中Nd的加入量由0.21% 逐渐增加至 2.65%时,合金的的晶粒尺寸由120μm减小至60μm,同时晶粒形态从六面体结构转变为类似玫瑰状结构。当Nd的加入量小于0.84% 时,Nd能够完全溶入镁基体中,铸锭中只有单相的α-Mg,当Nd的加入量超过1.62%,通过X射线衍射仪测试发现在晶界和晶界三角区有金属间化合物Mg12Nd生成。晶粒和晶界中的Mg12Nd相能够锁定晶界,减少晶界限滑移和位错滑移,能够明显改善镁合金高温下的抗拉强度,和屈服强度,同时伸长率稍有降低。

Li Mingzhao[8]等利用金相显微镜,SEM, EDS, XRD等手段研究了Nd对AZ31镁合金微观结构和力学性能。结果表明:在AZ31镁合金中加入微量的Nd能够在晶界和α-Mg相中生成金属间化合物Al2Nd 和 Mg12Nd ,Nd的吸收率高达95%,能够明显改善AZ31镁合金的微观结构和提高合金的力学性能。在AZ31镁合金中加入0.6wt%,抗拉强度达到245 MPa, 屈服强度为171 Mpa 延伸率为 9%。

侯志丹[9]研究了Nd对ZK60腐蚀性能的影响,研究表明ZK60-1%Nd 合金由α-Mg 基体和晶界的MgZn 相、MgZn2 相和Mg12Nd 相组成。晶界结构较为连续和紧实,晶界宽而明显,晶粒更为细小,大量带状或链状组织相互连接成网状,且晶界的Nd 与O 结合生成Nd2O3 钝化膜,Nd的加入可明显提高ZK60合金在3.5%NaCl水溶液中的耐蚀性。

Yan Jingli等[10]研究了Mg–2wt.%Nd镁合金的蠕变性能。在150至250?C,应力30至110 Mpa的条件下,在固溶强化和析出强化的作用下合金表现出良好的抗蠕变性能。在蠕变过程中有细小的沉淀物析出,这对限制位错的运动起到了重要作用。 Jie Yang等[11]研究了Gd对 Mg–4.5Zn合金微观组织和力学性能的影响。结果表明,随着Gd的加入,合金的晶粒尺寸逐渐细化,生成了Mg5Gd和 Mg3Gd2Zn3相,加入Gd后,合金的强度大大提高。当Gd的加入量为1.5%时,合金的强度最高,抗拉强度和屈服强度分别为231MPa 和113 Mpa。和未加入Gd前的Mg–4.5Zn合金相比,抗拉强度和屈服强度分别提高了22 MPa and 56Mpa。合金强化的主要和晶粒细化,Mg5Gd和Mg3Gd2Zn3相的强化作用以及Gd原子溶于镁基体的强化效果有关。

Gd对镁合金腐蚀性能的影响。王萍等[12]采用电化学方法研究了Gd含量对ZK60系镁合金在3.5%NaCI溶液中的腐蚀行为,并用金相显微镜、SEM观察了铸态显微组织及腐蚀形貌,对腐蚀产物进行了XRD分析。结果表明:稀土元素Gd可以细化合金晶粒,减少粗大共晶相MgZn的含量;在3.5%NaCI溶液中,腐蚀产物主要 Mg(OH)2;通过极化曲线测试,ZK60+1.6%Gd合金耐蚀性最好。在Cl作用下,腐蚀以点蚀为主,同时会形成以第二相MgZn和Mg5Gd为阴极,α-Mg为阳极的电偶腐蚀。 吴国华[13]等研究了稀土La对AZ91D镁合金在NaCl溶液中耐蚀性的影响,AZ9lD合金中加入1%La(质量分数)后,不但形成了条状的A111La3相和块状的Al8LaMn4相,而且在粗大p相(Mgl7All2)周围形成了许多细小的层片状β相,并使β相进一步网状化.这些细小的层片状p相明显阻碍了腐蚀的扩展,提高了AZ91D镁合金的耐蚀性.条状的Al11La3相和块状的Al8LaMn4相都属于阴极耐蚀相.其中Al11La3相由于较小的阴极面积,对加速其周围镁基体的腐蚀不起明显作用;而块状的Al8LaMn4相阴极面积较大,与基体构成微电偶腐蚀,加速了基体的腐蚀.

Jinghuai Zhang等[14]研究了富Ce稀土和La对Mg–4Al–0.4Mn镁合金的影响。研究表明:在Mg–4Al–4RE–0.4Mn (RE = Ce-rich mischmetal)合金中,沿着晶界有Al11RE3 andAl2RE两种相生成,而在Mg–4Al–4La–0.4Mn合金中的主要相为α-Mg 相和Al11La3相。Al11La3相占据着晶界的大部分区域,且有着复杂的形态。当用La代替富Ce稀土加入到Mg–4Al–0.4Mn镁合金中,改善了晶粒尺寸,并使晶界相分布一致性能,极大的提高Mg–4Al–0.4Mn镁合金的抗拉强度。在室温下,Mg–4Al–4La–0.4Mn的抗拉强度,屈服极限,延伸率分别为264 Mpa,146 Mpa,13%,优于Mg–4Al–4RE–0.4Mn的247Mpa, 140Mpa, 11%。Mg–4Al–4La–0.4Mn合金晶体附近范围内的微观结构的稳定性明显优于Mg–4Al–4RE–0.4Mn合金,其原因是Al11La3 的热力学稳定性优于Al11RE3。在蠕变测试中,Al11La3相能够有效阻碍晶界附近的晶界滑移和位错运动。在Mg–4Al–0.4Mn镁合金中加入La后的力学性能明显优于在合金中加入富Ce稀土。

鉴定和研究矿物的方法,随工作目的和要求的不同而异(表16-1)。不同的方法各有其特点,它们对样品的要求及所能解决的问题也各不相同。下面仅介绍某些重要方法的简要特点。

1.成分分析方法

此类方法所得结果即为物质的化学成分数据。除经典化学分析系化学方法外,其他常用方法均属物理方法,大多可同时分析多种元素,但一般不能区分变价元素的价态。

1)经典化学分析

此法准确度高,但灵敏度不很高,分析周期长,很不经济。样品要求是重量超过500mg的纯度很高的单矿物粉末。

此法只适用于矿物的常量组分的定性和定量分析。主要用于新矿物种或亚种的详细成分的确定和组成可变的矿物成分变化规律的研究。但不适用于稀土元素的分析。

表16-1 鉴定和研究矿物的主要方法一览表

2)光谱分析

此法准确度较差(尤其是对含量大于3%的常量元素),但灵敏度高,且快速、经济。可测元素达70多种。一次测试即能获得全部主要元素及微量元素的信息。样品要求:仅需数十毫克甚至数毫克的粉末样品。

光谱分析通常用于矿物的微量和痕量元素的定性或半定量分析。特别是对于稀有分散元素也能获得良好的效果。常作为化学分析的先导,以初步了解样品中元素的种类和数量,供进一步分析或研究时参考。

3)原子吸收光谱分析

原子吸收光谱(AAS)分析灵敏度高,干扰少,快速、精确且较经济。可测70多种元素,但一次只能分析一种元素,不宜于定性分析。样品用量少,仅需数毫克粉末样。

AAS主要用于10-6数量级微量元素和10-9数量级痕量元素的定量测定。适宜于测定沸点低、易原子化的金属元素及部分半金属元素。也可进行常量分析。但对稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高温元素的测定的灵敏度较低,对卤族元素、P、S、O、N、C、H等尚不能测定或效果不佳。

4)X射线荧光光谱分析

X射线荧光光谱(XRF)分析准确度较高,成本低,速度快,可不破坏样品。可分析元素的范围为9F~92U。XRF要求数克至十克(一般4~5g,最少可至数十毫克)较纯的粉末样。液态样品也可分析。

XRF用于常量元素和微量元素的定性或定量分析。尤其对稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能测定变价元素的价态。

5)等离子体发射光谱分析

等离子体发射光谱(ICP)分析比光谱分析更为快速和灵敏,检测下限可达(0.1×10-9)~(10×10-9)。精度较高,可达±3%,可测定除H、O、N和惰性气体以外的所有元素。样品要求:粉末,最少可以数毫克,也可以为液态样品。

ICP适用于常量、微量和痕量元素的定性或定量分析。特别宜于分析包裹体中含量极低的重金属离子。

6)激光显微光谱分析

激光显微光谱(LMES)分析灵敏度高,快速,有效,成本低,且被破坏样品的面积小。可测70多种元素。样品可以是光片、不加盖玻璃的薄片或大小合适的手标本,样品表面应抛光,切忌被污染;重砂、粉末或液体样品要作某些处理。

LMES适于微粒、微量、微区的成分测定。用于研究矿物的化学成分及元素的赋存状态,特别适用于微细疑难矿物的分析和鉴定。但是,目前对O、N、S等许多非金属元素尚无法分析,对碱金属、难熔金属(如Mo、Ta等)的检测灵敏度较低。

7)质谱分析

质谱分析灵敏度和准确度均高,且分析速度快。以纯度≥98%、粒径

质谱分析系10-6数量级定量分析,常用于准确测定各种岩石、矿物和有机物中元素的同位素组成。从10~30g的陨石标本中提取的稀有气体即足以为分析所用。

8)中子活化分析

中子活化分析(NAA)灵敏度高,大多数元素的灵敏度达10-6~10-13g。准确度高,精度高(一般在±1%~±5%)。可测的元素达80多种。可同时测定多种元素,分析速度快,且不破坏样品。样品要求是纯的单矿物粉末,样量仅需数毫克至数十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接测定浓度很低的贵金属元素,对稀土元素的分析特别有效。广泛用于同位素组成、同位素地质年龄的测定。此外,也常用于测定包裹体成分。适用于分析陨石和月岩样品的组成。

9)电子探针分析

电子探针分析(EPMA)灵敏度高,检测下限可达10-16g。精度一般可达1%~2%,但对微量元素的精度则可差于20%。分辨率高(约7nm)。放大倍数为数十倍至数十万倍。分析速度快,直观,且不破坏样品。可测元素的范围大:波谱分析为4Be~92U,能谱分析为11Na~92U。样品可以是光片、不加盖玻璃的薄片或矿物颗粒,且表面必须清洁、平坦而光滑。

EPMA系微米数量级微区的成分分析,宜于常量元素的定量分析。既可定点作定性或定量分析,又能作线扫描和面扫描分析,以研究元素的种类、分布和含量,了解矿物成分分布的均匀程度和元素在矿物中的赋存状态,定量测定矿物内部各环带的成分。最适于微小矿物和包裹体成分的定性或定量分析,以及稀有元素、贵金属元素的赋存状态的研究。此外,还可辅以形貌观察。EP-MA只能分析固态物质,对有机物质的分析有困难;不能分析元素的同位素、各种形式的水(如 H2 O和 OH-等)及其他挥发组分,无法区分 Fe2+和 Fe3+。

2.结构分析方法

此类方法一般不破坏样品,其分析结果是各种谱图,用于研究物质的晶体结构、分子结构、原子中电子状态的精细结构。有些还可借以鉴定样品的物相,如宝石学上目前常利用红外吸收光谱、激光拉曼光谱、可见光吸收光谱等技术来鉴别天然宝石和合成宝石。

1)X射线分析

X射线分析是晶体结构研究和物相分析的最常用而有效的方法。其具体方法种类繁多,一般可归为单晶法和粉晶法两类。

(1)单晶法:通常称为X射线结构分析,又有照相法和衍射仪法之分。目前主要采用四圆单晶衍射仪法,其特点是自动化程度高,快速,准确度高。单晶法要求严格挑选无包裹体、无双晶、无连晶和无裂纹的单晶颗粒样品,其大小一般在0.1~0.5mm。因此在应用上受到一定限制。单晶法主要用于确定晶体的空间群,测定晶胞参数、各原子或离子在单位晶胞内的坐标、键长和键角等;也可用于物相鉴定,绘制晶体结构图。

(2)粉晶法:又称粉末法,也有照相法和衍射仪法之分。粉晶法以结晶质粉末为样品,可以是含少数几种物相的混合样品,粒径一般在1~10μm。样品用量少,且不破坏样品。照相法只需样品5~10mg,最少可至1mg左右;衍射仪法用样量一般为200~500mg。粉晶衍射仪法简便,快速,灵敏度高,分辨能力强,准确度高。根据计数器自动记录的衍射图(diffraction diagram),能很快查出面网间距d值和直接得出衍射强度,故目前已广泛用于矿物或混合物之物相的定性或定量分析。粉晶法主要用于鉴别结晶质物质的物相,精确测定晶胞参数,尤其对鉴定粘土矿物及确定同质多象变体、多型、结构的有序—无序等特别有效。

2)红外吸收光谱分析

红外吸收光谱(IR)测谱迅速,数据可靠,特征性强。傅里叶变换红外光谱仪具有很高的分辨率和灵敏度及很快的扫描速度。样品不受物理状态限制,可以是气态、液态、结晶质、非晶质或有机化合物。干燥固体样品一般只需1~2mg,并研磨成2μm左右的样品。

IR已广泛应用于物质的分子结构和成分研究。适用于研究不同原子的极性键,可精确测定分子的键长、键角、偶极矩等参数;推断矿物的结构,鉴定物相;对研究矿物中水的存在形式、络阴离子团、类质同象混入物的细微变化、有序—无序及相变等十分有效。IR广泛用于粘土矿物和沸石族矿物的鉴定,也可对混入物中各组分的含量作定量分析。

3)激光拉曼光谱分析

激光拉曼光谱(LRS)系无损分析,其测谱速度快,谱图简单,谱带尖锐,便于解释。几乎在任何物理条件(高压、高温、低温)下对任何材料均可测得其拉曼光谱。样品可以是粉末或单晶(最好是5mm或更大者),不需特别制备,粉末所需量极少,仅0.5μg即可。也可以是液体样品(10-6ml)。

LRS和IR同为研究物质分子结构的重要手段,两者互为补充。LRS适用于研究同原子的非极性键的振动。

4)可见光吸收光谱分析

可见光吸收光谱分析简便、可信,不需挑选单矿物,不破坏样品。以0.03mm标准厚度的薄片为样品,但研究多色性时则需用单晶体。

此法主要用于研究物质中过渡元素离子的电子构型、配位态、晶体场参数和色心等。也常用于颜色的定量研究,探讨透明矿物的呈色机理。可适于研究细小(粒径在1~5mm)的矿物颗粒。

5)穆斯堡尔谱分析

穆斯堡尔谱分析又称核磁伽马共振(NGR)。分析准确、灵敏、快速,解谱较为容易。目前仅可测40多种元素近90种同位素。所研究的元素可以是主成分,也可是含量为万分之几的杂质。样品可以是晶质或者非晶质;既可是单晶,也可是矿物或岩石的粉末。但样品中必须含有一定浓度的与放射源中γ射线的核相同的元素。含铁矿物样品中Fe原子浓度为5mg/cm2为宜,硅酸盐样品量一般为100mg左右,因样品中Fe含量等因素而异。

NGR主要用于研究57Fe和119Sn元素离子的价态、配位态、自旋态、键性、磁性状态、占位情况及物质结构的有序—无序和相变等,也可用于物相鉴定和快速成分分析。对粘土矿物及陨石、月岩、海底沉积物等晶质多相混合物的研究很有效。

6)电子顺磁共振分析

电子顺磁共振(EPR)分析也称电子自旋共振(ESR)分析。灵敏度高。不破坏样品。只适于研究顺磁性离子:室温下能测定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多数稀土元素离子则只能在低温下测定。EPR分析对样品要求不高:固体、液体(0.1~0.01ml)、压缩气体或有机化合物均可;可以是单晶,也可以是粉末多晶混合物,但一般以单晶(粒径在2~9mm)为好。样品中顺磁性离子的浓度不超过1%,以0.1%~0.001%为宜。样品不需任何处理。

EPR主要用于研究过渡金属离子(包括稀土元素离子)的微量杂质的价态、键性、电子结构、赋存状态、配位态、占位情况、类质同象置换及结构的电子—空穴心、结构的有序—无序、相变等。也可作微量元素的定性或定量分析及地质年龄的测定等。在宝石学上,常用于鉴别天然宝石与合成宝石及研究宝石的染色机制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振仪广泛应用于某些分子结构的测定,其分辨率高,灵敏度高,测量速度快。但可测元素的种类有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。样品可以是较浓的溶液(约0.5ml)、固体(一般20~80mg)或气体。

NMR主要用于研究矿物中水的存在形式、质子的结构位置及离子的键性、配位态和有序—无序分布特征等,研究相变和晶格缺陷。

3.其他测试方法

1)透射电子显微镜分析

透射电子显微镜(TEM)分析的功能主要是利用透射电子进行高分辨的图象观察,以研究样品的形貌、晶格缺陷及超显微结构(如超显微双晶和出溶片晶等)等特征,同时用电子衍射花样标定晶体的结构参数和晶体取向等。配有能谱仪(或波谱仪)者尚可进行微区常量元素的成分分析。TEM具有很高的分辨率(达0.1nm左右)和放大倍数(为100倍~200万倍),可以直接观察到原子。样品可以是光片、不加盖玻璃的薄片或粉末样,表面须平坦光滑。

2)扫描电子显微镜分析

扫描电子显微镜(SEM)分析的主要功能是利用二次电子进行高分辨率的表面微形貌观察。通常也辅以微区常量元素的点、线、面扫描定性和定量分析,查明元素的赋存状态等。SEM的分辨率高(达5nm左右),放大倍数为10倍~30万倍。样品可以是光片、不加盖玻璃的薄片、粉末颗粒或手标本。其制样简单,图象清晰,立体感强,特别适合粗糙表面的研究,如矿物的断口、晶面的生长纹和阶梯等观察及显微结构分析等。

3)微分干涉(相衬)显微镜分析

微分干涉(相衬)显微镜(DIC)能够观察矿物表面纳米数量级的分子层厚度。反射型显微镜用于研究晶体表面微形貌,观察晶体表面上的各种层生长纹和螺旋生长纹,从而探讨晶体的生长机制;透射型显微镜用于研究岩石薄片中矿物的结晶状态及内部显微构造,能清晰看到微米数量级的微裂纹,从而有助于研究岩石受应力作用的方向和性质。微分干涉(相衬)显微镜的纵向分辨率高,立体感强。其样品可以是带晶面的晶体颗粒或者薄片。

4)热分析

热分析系根据矿物在加热过程中所发生的热效应或重量变化等特征来鉴定和研究矿物。广泛采用的有差热分析和热重分析。

(1)差热分析(DTA):是测定矿物在连续加热过程中的吸热(脱水、分解、晶格的破坏和类质同象转变等)和放热(氧化、结晶等)效应,以研究矿物的结构和成分变化。用于了解水的存在形式,研究物质的内部结构和结晶度,研究类质同象混入物及其含量,可进行物相的鉴定及其定量分析。尤其对粘土矿物、氢氧化物和其他含水矿物及碳酸盐类等矿物的研究最为有效。DTA只适用于受热后有明显的物理、化学变化的物质,一般仅用于单相物质纯样的研究,样量仅需100~200mg,粒度在0.1~0.25mm。DTA设备简单,用样量少,分析时间较短,但破坏样品,且干扰因素多,混合样品不能分离时会相互干扰。因此,必须与X射线分析、电子显微镜、化学分析等方法配合使用。

(2)热重分析(TG):是测定矿物在加热过程中质量的变化。热重曲线的形式取决于水在矿物中的存在形式和在晶体结构中的存在位置。TG仅限于鉴定和研究含水矿物,并可确定其含水量。TG以纯的矿物粉末为样品,样量一般需2~5g,且破坏样品。TG常与DTA配合使用。目前正向微量(10-5g)分析发展。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/76422.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-03
下一篇2023-03-03

发表评论

登录后才能评论

评论列表(0条)

    保存