摘 要 运用 X 射线衍射分析( XRD) 、带能谱仪的扫描电镜( SEM-EDX) 和光学显微镜等技术,首次在鄂尔多斯盆地东北缘准格尔矿区6 号巨厚煤层中发现了超常富集的勃姆石及其特殊的矿物组合,勃姆石含量可高达13. 1%,与勃姆石伴生的矿物有磷锶铝石、锆石、金红石、菱铁矿、方铅矿、硒铅矿和硒方铅矿。重矿物的组合特征与华北地区本溪组铝土矿中的重矿物组合特征相似,高含量的勃姆石主要来源于聚煤盆地北偏东方向本溪组风化壳铝土矿,三水铝石以胶体溶液的形式从铝土矿中被短距离带入泥炭沼泽中,在泥炭聚积阶段和成岩作用早期经压实作用脱水凝聚而形成勃姆石。
任德贻煤岩学和煤地球化学论文选辑
煤中矿物是煤的重要组成部分。从成因角度来看,煤中矿物的成分和特征,既反映聚煤环境的地质背景,有时又反映煤层形成后所经历的各种地质作用过程,有助于阐明煤层的成因、煤化作用、区域地质历史演化等基本理论问题( Ward,2002) 。从煤的利用角度看,煤中矿物含量直接影响煤发热量的高低和煤的加工利用特性( 韩德馨,1996) ,也是在炼焦冶金过程中造成磨损、腐蚀、污染的主要来源。另外,煤中大部分微量有害元素的含量、存在形式及其对环境的污染也与煤中矿物有关( Vassilev et al. ,1994) ,矿物是煤中微量元素的主要载体( 唐修义等,2004) 。Gupta 等( 1999) 认为,煤利用过程中大部分问题是煤中矿物引起的,而不是煤中的有机显微组分。另一方面,煤中所富集的达到工业品位要求的稀有元素、放射性元素是伴生的有用矿产,有的矿物在煤炭利用加工过程中能起催化作用,提高了煤的经济技术价值。因此,对煤中矿物的成分、含量、成因和赋存状态的研究,具有重要的理论和现实意义。
一、煤中发现的矿物
煤中矿物主要有石英、黏土矿物( 主要是高岭石、伊利石、伊利石/蒙脱石混层矿物) 、碳酸盐矿物( 菱铁矿、方解石、白云石) 、硫化物矿物( 如黄铁矿) ( Ward,1978,2002Harvey et al. ,1986Palmer et al. ,1996) 。国内外学者对煤中矿物,特别是这 4 大类矿物的赋存特征和地质成因进行了较为广泛的研究( Martinez-Tarazona et al. ,1992Patterson et al. ,1994黄文辉等,1999Hower et al. ,2001Ward,2002Dai et al. ,2003) ,并运用低温灰化、X 射线衍射、带能谱仪的扫描电镜等方法发现了煤中许多痕量矿物,如独居石、锆石、纤磷钙铝石、水绿矾、胶磷矿、铬铅矿等( Querol et al. ,1997Rao et al. ,1997Ward,1989Dill et al. ,1999Vassilevet al. ,1998Li et al. ,2001丁振华等,2002) 。根据 Finkelman( 1981) 的资料,煤中已鉴定出的矿物达 125 种以上Bouka 等( 2000) 认为煤中可能存在 145 种矿物唐修义等( 2004) 汇总了国内外文献报道,列出了煤中可以鉴定出的 201 种晶体矿物。
根据前人的研究资料,煤中发现的氢氧化物矿物有: 褐铁矿、铝土矿、针铁矿、纤铁矿、硬水铝石、三水铝石、勃姆石、黑锌锰矿、水镁石,羟钙石。其中褐铁矿、铝土矿、针铁矿在煤中常见,对其成因也有较多的研究( Dill et al. ,1999) 纤铁矿在煤中较少见,主要存在于泥炭中( Bouka et al. ,1997) 硬水铝石在煤中含量较低,主要存在于有火山灰层夹矸的煤层中,且主要在火山灰层夹矸中( Burger et al. ,1971) 三水铝石在煤中少见( Bouka et al. ,2000) 勃姆石、黑锌锰矿、水镁石和羟钙石等矿物在煤中偶见或罕见( Ward,1978Bouka etal. ,2000唐修义等,2004) 。
值得关注的是,虽然勃姆石可以存在于某些煤系地层的黏土岩夹矸中,并对其进行了一些研究工作( Maoyuan et al. ,1994梁绍暹等,1997刘钦甫等,1997) ,但是对煤中勃姆石的赋存、成因在国内外尚未见公开报道的资料,其主要原因就是它在煤中较为罕见。Bouka等( 2000) 认为勃姆石在煤中是非常稀少的Ward( 1977,1984,2002) 认为在个别煤中可以存在痕量的勃姆石,但高含量的勃姆石在煤中是非同寻常的。Goodarzi 等( 1985) 、Harvey 等( 1986) 、Patterson 等( 1994) 、Vassilev( 1994) 等分别对加拿大、澳大利亚、美国、保加利亚的煤中矿物进行了研究,未发现勃姆石。Tatsuo 等( 1993,1996) ,Tatsuo( 1998) 在日本北海道的石狩湾煤田古近纪煤的低温灰化产物中发现了含量很少的勃姆石( 在所采集的 85 个煤样品中,仅 8 个样品的低温灰化产物中有勃姆石,并且其最高含量仅占低温灰化产物中矿物总量的 2. 5%) 。除此之外,国内外对煤中勃姆石的研究再无公开报道。
二、地质背景和实验方法
准格尔煤田地处鄂尔多斯盆地的东北缘,煤田南北长 65km,东西宽 26km,面积1700km2,已探明的煤炭地质储量为 268 亿吨。它是鄂尔多斯盆地煤层最富集的地带,也是沉积相变最明显的地带,石灰岩在煤田内全部尖灭,逐渐相变为陆源碎屑岩。准格尔煤田的含煤岩系包括上石炭统本溪组、太原组和下二叠统山西组,含煤岩系总厚 110 ~160 m,煤系地层的底板为中奥陶统石灰岩,其上覆地层为下石盒子组、上石盒子组、石千峰组、刘家沟组等非含煤地层。该区主采煤层6 号煤位于太原组的顶部,厚度一般在2. 7 ~35 m 之间,平均厚度为 30m,最厚可达 50 m,是在三角洲沉积体系的背景下形成的一巨厚煤层( 刘钦甫等,1997) 。
按照 GB 482-1995 和 MT 262-91 的采样规范和矿区煤层开采的实际情况,对准格尔矿区黑岱沟矿6 号煤层煤样进行了分层样品的采集。样品的编号、厚度及特征如图 1 所示。煤层自上而下的编号为 ZG6-1、ZG6-2、ZG6-3、ZG6-4、ZG6-5、ZG6-6 和 ZG6-7。用 X 射线衍射分析( XRD) 对该煤层进行了矿物组成研究,用带能谱仪的扫描电镜( SEM-EDX) 和 MPV-Ⅲ显微镜光度计对矿物的形貌特征进行观察。按照 GB 8899-88 对煤的显微组分和矿物进行了定量统计,测试结果的单位为体积百分数( vol. %) ,两次测试结果的允许差小于4. 5% 。
图 1 研究区 6 号煤层柱状及分层矿物组成
三、勃姆石及其特殊矿物组合的发现和赋存特征
在矿物组成上,准格尔 6 号煤层 d 剖面自上而下明显分成 4 段,第 1 段由 ZG6-1 组成,第 2 段由 ZG6-2、ZG6-3 和 ZG6-4 组成,第 3 段由 ZG6-5 组成,第 4 段由 ZG6-6 和 ZG6-7 组成。这 4 段的矿物组成有很大差别( 图 1) 。自上而下的特征如下:
( 1) X 射线衍射分析( 图 2a) 和光学显微镜下测定 ZG6-1 分层的矿物组成以石英为主,含量高达 16. 4%( 表 1) ,呈分散状( 图版Ⅰ-1) ,石英造成煤的矿化现象比较严重( 图版Ⅰ-2) 。从石英形态特征来看,其边缘棱角明显,粒度均匀,大多为 5 ~ 10μm ( 图版Ⅰ-3) ,主要分布在基质镜质体中,也存在于同生黏土矿物中,在均质镜质体中也有分布。黏土矿物( 主要是高岭石) 的含量为5. 5%( 表1) 。该分层的石英和黏土矿物的 SEM-EDX 测试结果如表2 所示。
表 1 准格尔煤田 6 煤层的煤岩组成
注: bdl 为低于检测极限。
图 2 研究区 6 号煤层分层样品的 XRD 图
( 2) ZG6-2、ZG6-3、ZG6-4 的组成以超常富集的勃姆石为主,其含量分别为 11. 9% 、13. 1% 和 11% ( 图 2b、c、d表 1) ,如此高含量的勃姆石存在于煤中,在国内外尚无报道。另外,这 3 个分层中高岭石含量分别为 4. 3%、3. 6%和 4. 4%。勃姆石在该煤层中呈隐晶状产出,其赋存状态多样,但主要以团块状分布于基质镜质体中,有的以单独的团块状或不规则的团块状出现( 图版Ⅰ-4 ~6) ,有的以连续的团块状或串珠状出现,也有的充填在成煤植物的胞腔中( 图版Ⅰ-7) 。呈团块状分布的勃姆石的粒度差别很大,为 1 ~ 300μm。在偏光显微镜下,勃姆石与黏土矿物的区别主要是: 勃姆石致密,而黏土矿物比较松散( 图版Ⅰ-8) ,勃姆石的反射色比黏土矿物浅,并且勃姆石的突起较高( 图版Ⅰ-6) ,黏土矿物不显突起( 图版Ⅰ-8) 。在这些勃姆石富集的煤层中,与勃姆石伴生的矿物组合也较特殊,这些矿物包括金红石、磷锶铝石、锆石、菱铁矿、方铅矿、硒铅矿和硒方铅矿。在 ZG6-2 中,有较高含量的金红石( 1. 6%) ,金红石以单晶或膝状双晶形式出现,并有环带结构的现象( 图版Ⅱ-1,2) 。在ZG6-2 和 ZG6-3 中有磷锶铝石,磷锶铝石主要充填在丝质体的胞腔中,呈圆粒状出现,粒度为1 ~2μm( 图版Ⅰ-7,图版Ⅱ-3) 。在 ZG6-3 中有方铅矿、硒铅矿和硒方铅矿,这3 种矿物呈浑圆状产出( 图版Ⅱ-4) ,其内部结构比较特殊,有许多孔洞,似明显的菌藻类等低等生物矿化的迹象( 图版Ⅱ-5) 。在 ZG6-2 和 ZG6-3 中,有锆石,其破碎的痕迹表明来源于物源区( 图版Ⅱ-6,7) 。此外,在勃姆石富集的层位还有少量的菱铁矿( 图版Ⅱ-8) 。由于金红石、磷锶铝石、锆石和菱铁矿的含量不高,X 射线衍射分析未能检测出,主要是通过偏光显微镜和带能谱仪的扫描电镜( SEM-EDX) 所观察的晶体形态和物质成分加以鉴定。
( 3) ZG6-5 的矿物组成以高岭石为主,含量为 11. 4% ,含少量勃姆石( 3. 3% ) 及痕量的黄铁矿。
( 4) ZG6-6 和 ZG6-7 的矿物以高岭石为主,含量分别为 22% 和 19. 5% ,有痕量的黄铁矿、石英和方解石,未见勃姆石( 图 2e、f) 。
四、勃姆石及其伴生矿物成因初探
勃姆石是硅酸盐岩石的风化产物,常与三水铝石、硬水铝石、高岭石、迪开石、玉髓、铵云母等矿物共生,此外,还可能是低温热液产物,与泡沸石共生( Kondakov et al. ,1975Hrinko,1986梁绍暹等,1997Banerji,1998程东等,2001) 。但在勃姆石富集的煤层中,除高岭石外,没有发现上述共生矿物,也没有发现任何低温热液矿物或热液活动的证据。
根据王双明等( 1996) 的研究表明,在准格尔煤田 6 号煤层的形成初期( 对应的煤层编号为 ZG6-7 和 ZG6-6) ,准格尔煤田北偏西方向地势高,而南偏东地势低,陆源碎屑物质主要来自北西方向的阴山古陆广泛分布的中元古代钾长花岗岩,因此在 ZG6-7 和 ZG6-6 分层中所形成的矿物和鄂尔多斯盆地其他地区煤的矿物组成差别不大,以陆缘碎屑的黏土矿物为主。在煤层形成的中期( 相对应的煤层编号为 ZG6-5、ZG6-4、ZG6-3 和 ZG6-2) ,煤田的北东部开始隆起,并有本溪组铝土矿出露,煤田处于北偏西的阴山古陆和北偏东本溪组隆起的低洼地区,聚煤作用持续进行,古河流的方向为北偏东( 王双明等,1996) ,表明陆源碎屑主要来自北偏东的隆起。根据石炭纪石灰岩氧、碳同位素值代表的环境意义,得出石炭纪石灰岩是在正常海相环境中形成的,并计算出太原组形成期古水温平均为 29 ~ 32℃,说明当时该地区气候为炎热( 刘焕杰等,1991程东等,2001) 。根据林万智( 1984) 和程东等( 2001) 对该区石炭纪古地磁研究推测,准格尔煤田晚石炭世的古纬度在北纬 14°左右。这种热带湿热气候有利于本溪组风化壳三水铝石的形成( 程东等,2001) 。三水铝石为氧化的开放环境的产物。三水铝石以及少量的黏土矿物在水流的作用下,以胶体的形式经过短距离的搬运到准格尔泥炭沼泽中。根据王双明等( 1996) 的研究,准格尔煤田距离风化壳仅为50km 左右。随着泥炭的持续聚积,到对应的煤层为 ZG6-1 时,北偏东方向的本溪组隆起下降,陆源碎屑的供给又转变为北偏西方向的阴山古陆的中元古代钾长花岗岩,除在 ZG6-1分层中的大量石英外,主要为黏土矿物。在泥炭聚积和成岩作用早期阶段,ZG6-5、ZG6-4、ZG6-3 和 ZG6-2 分层中三水铝石胶体溶液在上覆沉积物的压实作用下,发生脱水作用形成勃姆石。从勃姆石的赋存形态来看,大部分勃姆石呈絮凝状,也反映了它的胶体成因的特点。刘长龄等( 1985) 认为,勃姆石形成主要与成岩阶段的弱酸性与弱氧化至弱还原的介质环境有关,勃姆石在泥炭沼泽中更易形成。山西河曲本溪组铝土矿富含勃姆石,山西和河南铝土矿的重矿物组成有锆石、金红石、方铅矿等,和富勃姆石煤层中的重矿物组合相似( 刘长龄等,1985) ,也是 6 号煤层中勃姆石来源于本溪组铝土矿的佐证。6 号煤中高含量勃姆石的形成与含煤岩系高岭岩中的勃姆石或勃姆石岩的形成不同,刘钦甫等( 1997) 的研究表明,含煤岩系高岭岩中的勃姆石或勃姆石岩中勃姆石的形成主要是高岭石在介质的酸度( pH <5) 增大时脱硅形成的,并且具有高岭石的假象。而在该煤层中的勃姆石没有交代高岭石的现象。
表2 勃姆石及其伴生矿物的SEM-EDX 测试结果
注: Min 为最小值Max 为最大值AM 为算术均值bdl 为低于检测极限。
研究区晚古生代煤中高含量勃姆石的出现并不是一个简单、孤立的地质事件,它独特的赋存状态、成因、伴生矿物组合关系与其周围的地质体、煤层的形成演化、煤层形成时的古地理和古气候具有不可分割的联系。
致谢: 感谢中国科学院地质与地球物理研究所曾荣树研究员和中国石油大学( 北京) 钟宁宁教授给予的悉心指导和大力帮助。
参 考 文 献
程东,沈芳,柴东浩 . 2001. 山西铝土矿的成因属性及地质意义 . 太原理工大学学报,32( 6) : 576 ~579
丁振华,Finkelman R B,Belkin H E 等 . 2002. 煤中发现镉矿物 . 地质地球化学,30( 2) : 95 ~96
韩德馨 . 1996. 中国煤岩学 . 徐州: 中国矿业大学出版社,67 ~78
黄文辉,杨起,汤达祯等 . 1999. 陶枣煤田晚古生代煤中硫及伴生有害元素分布特征 . 地学前缘,6( 增刊) : 45 ~51
梁绍暹,任大伟,王水利等 . 1997. 华北石炭—二叠纪煤系黏土岩夹矸中铝的氢氧化物矿物研究 . 地质科学,32( 4) :478 ~ 485
林万智 . 1984. 中朝板块晚古生代的古地磁特征 . 物探与化探,( 5) : 297 ~305
刘长龄,时子祯 . 1985. 山西、河南高铝黏土铝土矿矿床矿物学研究 . 沉积学报,3( 2) : 18 ~36
刘焕杰,张瑜瑾,王宏伟等 . 1991. 准格尔煤田含煤建造岩相古地理研究 . 北京: 地质出版社
刘钦甫,张鹏飞 . 1997. 华北晚古生代煤系高岭岩物质组成和成矿机理研究 . 北京: 海洋出版社,24 ~38
唐修义,黄文辉等 . 2004. 中国煤中微量元素 . 北京: 商务印书馆
王双明 . 1996. 鄂尔多斯盆地聚煤规律及煤炭资源评价 . 北京: 煤炭工业出版社
Banerji P K. 1998. A plea for systematic study on some unusual aspects of bauxite at Salal,Jammu and Kashmir. Indian Miner- als,42( 1) : 65 ~ 70
Bouka V,Dvoˇrák Z. 1997. Minerals of the North Bohemian lignite Basin. Nakl. Dick,Praha,1 ~ 159
Bouka V,Peek J,Sykorova I. 2000. Probable modes of occurrence of chemical elements in coal. Acta Montana,Ser. B. Fuel, Carbon,Mineral Process,Praha,( 10) : 53 ~ 90
Burger K,Stadler G. 1971. Monographie des Kaolin-Kohlenton-steins Zollverein 8 in den Eissener Schichten ( Westfal B1) des niederrheinisch-westfalischen Steinkohlenreviers. I und II,Forschungsber. Nordrhein,Westfalen,Nr. 2125,Westdeutscher Verlag,Koln. ,1 ~ 96 ( in German)
Dai S F,Hou X Q,Ren D Y et al. 2003. Surface analysis of pyrite in the No. 9 coal seam,Wuda Coalfield,Inner Mongolia,
China,using high-resolution time-of-flight secondary ion mass-spectrometry. International Journal of Coal Geology,55( 2 ~4) : 139 ~ 150
Dill H G,Wehner H. 1999. The depositional environment and mineralogical and chemical compositions of high ash brown coal resting on early Tertiary saprock. International Journal of Coal Geology,39: 301 ~ 328
Finkelman R B. 1981. Modes of occurrence of trace elements in coal. US Geol. Surv. Open-File Rep. ,81 ~ 99,322
Goodarzi F,Foscolos A E,Cameron A R. 1985. Mineral matter and elemental concentrations in selected western Canadian coals. Fuel,64: 1599 ~ 1605
Gupta R,Wall T F,Baxter L A. 1999. The Impact of Mineral Impurities in Solid Fuel Combustion. Plenum,New York,768
Harvey R D,Ruch R R. 1986. Mineral matter in Illinois and other US coals. In: Vorres K S,ed. Mineral Matter in Coal Ash and Coal. American Chemical Society Symposium Series 301,10 ~ 40
Hower J C,Williams D A,Eble C F et al. 2001. Brecciated and mineralized coals in Union County,Western Kentucky coal field. International Journal of Coal Geology,47: 223 ~ 234
Hrinko V. 1986. Technological, chemical, and mineralogical characteristics of bauxites and country rocks near Drie- novec. Mineralia Slovaca,18( 6) : 551 ~ 555
Kondakov I V,Korobeinikov R A. 1975. Bauxite occurrence in the northern Caucasus. Litol. Polezn. Iskop. ,( 1) : 124 ~ 127( in Russian)
Li Z,Moore T A,Weaver S D,Finkelman R B. 2001. Crocoite: an unusual mode of occurrence for lead in coal. International Journal of Coal Geology,45: 289 ~ 293
Liu Qinfu,Zhang Pengfei. 1997. Compositions and mechanism of kaolin in the Late Paleozoic Coal-bearing Strata of North Chi- na. Beijing: Ocean Press,24 ~ 38
Maoyuan Ya N,Gromov A V,Pavlov E G. 1994. Mineralogy of tonsteins in Chungou coal basin ( China) . Geologiya i Razved- ka,( 2) : 47 ~ 54 ( in Russian)
Martinez-Tarazona M R,Spears D A,Palaicios J M et al. 1992. Mineral matter in coals of different rank from the Asturian Central Basin. Fuel,71: 367 ~ 372
Palmer C A,Lyons P C. 1996. Selected elements and major minerals from bituminous coal as determined by INAA: implica- tions for removing environmentally sensitive elements from coal. International Journal of Coal Geology,32: 151 ~ 166
Patterson J H,Corcoran J F,Kinealy K M. 1994. Chemistry and mineralogy of carbonates in Australian bituminous and sub-bi tuminous coals. Fuel,73: 1735 ~ 1745
Querol X,Whateley M K G,Fernández-Turiel J L et al. 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite,Central Anatolia,Turkey. International Journal of Coal Geology,33: 255 ~ 271
Rao P D,Walsh D E. 1997. Nature and distributions of phosphorus minerals in Cook Inlet coals,Alaska. Internaitonal Journal of Coal Geology,33: 19 ~ 42
Tatsuo K. 1998. Relationships between inorganic elements and minerals in coals from the Ashibetsu district,Ishikari coal field, Japan. Fuel Processing Technology,56( 1 ~ 2) : 1 ~ 19
Tatsuo K,Makoto K. 1993. Mineral matter in the Ashibetsu coals. Shigen to Kankyo,2( 5) : 491 ~ 499
Tatsuo K,Makoto K. 1996. Mineralogical composition of the Ashibetsu coals in the Ishikari coalfield,Japan. Shigen Chishitsu,46( 1) : 13 ~ 24
Vassilev S V,Yossitora M G,Vassileva C G. 1994. Mineralogy and geochemistry of Bobov Dol coals,Bulgaria. International Journal of Coal Geology,26: 185 ~ 213
Vassilev S V,Christina G. 1998. Comparative chemical and mineral characterization of some Bulgarian coals. Fuel Processing Technology,55: 55 ~ 69
Ward C R. 1977. Mineral matter in the Harrisburg-Springfield ( No. 5 ) Coal Member of the Carbondale Formation,Illinois Basin. Illinois State Geological Survey,Circular 498,35
Ward C R. 1978. Mineral matter in Australian bituminous coals. Proceedings,Australasian Institute of Mining and Metallurgy,267: 7 ~ 25
Ward C R. 1984. Coal Geology and Coal Technology. Blackwell,Oxford,345
Ward C R. 1989. Minerals in bituminous coals of the Sydney basin ( Australia) and the Illinois basin ( USA) . International Jour- nal of Coal Geology,13: 455 ~ 479
Ward C R. 2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology,50:135 ~ 168
图版说明
图版Ⅰ
1. ZG6-1 中的石英( SEM ) 。
2. ZG6-1 中的石英,矿化现象严重( 油浸,反射单偏光,320 × ) 。
3. ZG6-1 中的石英,棱角明显,粒度均匀( SEM ) 。
4. ZG6-2 中规则的团块状勃姆石( SEM ) 。
5. ZG6-2 中不规则团块状勃姆石( SEM ) 。
6. ZG6-3 中不规则团块状勃姆石,突起高( 油浸,反射单偏光,320 × ) 。
7. ZG6-3 中充填于丝质体胞腔的勃姆石和磷锶铝石( SEM ) 。
8. ZG6-5 中黏土矿物,不显突起( 油浸,反射单偏光,320 × ) 。
图版Ⅱ
1. ZG6-2 中的金红石晶体( 油浸,反射单偏光,320 × ) 。
2. ZG6-2 中金红石的膝状双晶( SEM ) 。
3. ZG6-3 中充填于胞腔的磷锶铝石( SEM ) 。
4. ZG6-3 中呈浑圆状产出的硒方铅矿( SEM ) 。
5. ZG6-3 中硒铅矿的内部结构( SEM ) 。
6. ZG6-2 中的锆石( SEM ) 。
7. ZG6-3 中的锆石( SEM ) 。
8. ZG6-3 中的菱铁矿( SEM ) 。
代世峰等: 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现
图版Ⅰ
任德贻煤岩学和煤地球化学论文选辑
代世峰等: 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现
图版Ⅱ
任德贻煤岩学和煤地球化学论文选辑
A discovery of extremely-enriched boehmite from coal in the Junger coalfield,the northeastern Ordos Basin.
DAI Shifeng1,2,REN Deyi1,2,LI Shengsheng2,Chen Lin CHOU3
( 1. Key Laboratory of Coal Resources of CUMT,Beijing,1000832. Department of Resources and Earth Science, China University of Mining and Technology,Beijing,1000833. Illinois State Geological Survey,IL61820,USA)
Abstract: The authors found an extremely-enriched boehmite and its associated minerals for the first time in the super-thick No. 6 coal seam from the Junger Coalfield in the northeastern Ordos Basin by using technologies including the X-ray diffraction analysis ( XRD ) ,scanning electron microscope equipped w ith an energy dispersive X-ray spectrometer,and optical micro- scope. The content of boehmite is as high as 13. 1% ,and the associated minerals are goyazite, zircon,rutile,goethite,galena,clausthalite,and selenio-galena. The heavy minerals assem- blage is similar to that in the bauxite of the Benxi Formation from North China. The high boehmite in coal is mainly from w eathering crust bauxite of the Benxi Formation from the north- eastern coal-accumulation basin. The gibbsite colloidstone solution w as removed from bauxite to the peat mire,and boehmite w as formed via compaction and dehydration of gibbsite colloid- stone solution in the period of peat accumulation and early period of diagenesis.
Key words: coalboehmiteLate Paleozoic periodJunger Coalfield
( 本文由代世峰、任德贻、李生盛合著,原载《地质学报》,2006 年第 80 卷第 2 期)
本族矿物包括镁、锌、铁、锰、钙、锶、铅和钡等二价阳离子与碳酸根化合而成的无水碳酸盐。其中镁、锌、铁、锰和钙的碳酸盐之晶体结构属方解石型,锶、铅、钡和钙的碳酸盐之晶体结构属文石型。Ca[CO3]有三个同质多像变体,最常见的是三方晶系变体方解石,其次是正交晶系变体文石,而六方晶系变体六方碳钙石由于稳定性很差,在自然界很少见。
方解石的晶体结构视为变形的Na Cl型结构。使Na Cl的立方晶胞沿一个三次对称轴方向压扁至棱间交角为101°55′的钝角菱面体(图11-2A),并以Ca2+和[CO3]2-分别取代Na+和Cl-的位置,即为方解石结构。垂直该三次轴方向上,[CO3]2-配位三角成层排列,每一[CO3]2-层均与其相邻层中的[CO3]2-三角形的位向相反。Ca2+的配位数为6。由于Na Cl具有{100}完全解理,在方解石中相当于 完全解理。对应于 解理的菱面体晶胞是一个面心格子的大晶胞,不符合布拉维空间格子的选择原则。方解石真正的单位晶胞应是一锐角菱面体状。三方菱面体格子可按六方格子进行划分,因此方解石的锐角菱面体单位晶胞可划分成具双重体心的六方晶胞(图11-2B)。
图11-2 A-方解石的结构;B-单位晶胞与菱面体解理的关系
菱面体解理是面心格子,用六方格子划分为原始菱面体格子
(据陈武等,1985)
文石型结构中Ca2+和[CO3]2-的排列方式与方解石不同,如图11-3,其Ca2+近似呈六方紧密堆积(方解石中Ca2+近似呈立方紧密堆积);每个Ca2+与相邻接触的O2-不是6个,而是9个,即Ca2+的配位数为9,每个O由3个Ca和1个C与其配位。因此,文石结构较方解石结构紧密。
图11-3 文石的晶体结构
长虚线示出与晶胞中央的Ca2+配位的9个O2-
根据结构属方解石型抑或文石型,本族矿物相应地分为方解石亚族和文石亚族。
(一)方解石亚族
本亚族矿物包括方解石Ca[CO3]、菱镁矿Mg[CO3]、菱铁矿Fe[CO3]、菱锰矿Mn[CO3]、菱锌矿Zn[CO3]等。各矿物组分之间的类质同像置换普遍。
方解石Calcite—Ca[CO3]
晶体参数 三方晶系;对称型3m。空间群R3Ca0=0.499nm,c0=1.706nmZ=6。
成分与结构 Ca O 56.0%,CO244.0%。Ca[CO3]与Mn[CO3]之间呈完全类质同像系列;Ca[CO3]与Zn[CO3]、Ca[CO3]与Fe[CO3]之间为不完全类质同像系列。由于Ca2+、Mg2+的半径相差过大,低温下的替代能力极小,当Ca和Mg同时存在时,则形成复盐白云石Ca Mg[CO3]2。方解石的结构见前描述。
形态 常以良好晶形出现(图11-4、11-6)。如 六方柱,{0001}底面, 和 等菱面体,以及 复三方偏三角面体等。若呈片状或薄板状者称为层解石。以 为双晶面的负菱面聚片双晶或接触双晶极为常见。前者多为滑移双晶(见白云石)以(0001)为双晶面的方解石律接触双晶也较普遍(图11-5A),以 为双晶面的接触双晶则少见(图11-5B)。集合体常呈晶簇状、片状、粒状、块状、钟乳状(称钟乳石stalactite)、结核状等。
图11-4 方解石的晶形
A—厚板状;B—复三方偏三角面体;C—柱状
c{0001},m{1010},e{0112},v{2131},r{1011}
(据Berry等,1983,修改)
图11-5 方解石的双晶
A一以(0001)为双晶面的方解石律双晶;B—以(2021)为双晶面的接触双晶v{2131}
(据Berry等,1983,修改)
图11-6 方解石晶体
A—菱面体的方解石和紫水晶;B—复三方偏三角面体的方解石和萤石
(据Klein等,2007)
物理性质 一般呈白色,含各种混入物呈不同的颜色,如灰、黄、浅红、绿、蓝等色;玻璃光泽。硬度3;解理平行 完全。密度2.715g/cm3。加冷稀HCl剧烈起泡。纯净、无色透明的方解石,称为冰洲石(iceland spar)。
鉴定特征 菱面体完全解理,硬度3,加冷稀HCl剧烈气泡。
成因与产状 方解石形成于多种地质作用。①沉积作用:海水中Ca[CO3]达到过饱和后,形成沉积的石灰岩。②风化作用:石灰岩被溶解后形成重碳酸钙溶液,当压力减小或蒸发时,释放出大量的CO2,使Ca[CO3]沉淀下来形成方解石。它们常分布在石灰岩的溶洞或裂隙中。我国石灰岩溶洞尤以桂林为佳,其中的石钟乳和石笋形成瑰丽壮观的景色,闻名世界。③生物作用:生物吸收Ca[CO3]后形成的介壳在海底堆积形成生物礁灰岩。④岩浆作用:来自上地幔或由碱性岩浆分异的碳酸盐岩浆,侵入地壳冷凝结晶而成。⑤热液作用:中低温热液矿脉中经常伴有方解石出现。⑥泉水中溶解的重碳酸钙,当到达地表后因压力降低释放出CO2,在泉水出口处沉淀出石灰华(travertine)。
主要用途 石灰岩和大理岩主要由方解石组成,它们是化工、水泥等工业的原料。在冶金工业上用做熔剂,在建筑工业方面用来生产水泥、石灰,大理岩还可作建筑装饰材料。方解石经机械加工(用雷蒙磨或其他高压磨直接粉碎天然的方解石)可以制得重质碳酸钙,它是优良的填充剂和性能改良剂,广泛用于塑料、橡胶、造纸、涂料、电缆、油漆、饲料、医药、玻璃、陶瓷等领域。例如,电缆皮中添加了重质碳酸钙可以提高电缆5~10倍的绝缘强度;如果用万目以上碳酸钙超细粉制成的轿车底盘涂料,可以使轿车底盘有比钢板还强的防冲刷能力。当前,重质碳酸钙成为大部分工业制造的原始材料,囊括了大部分轻重工业的生产和制造部门。
冰洲石因具有双折射,成为制造偏光棱镜的光学材料。
菱镁矿Magnesite—Mg[CO3]
晶体参数 三方晶系;对称型 。空间群 a。=0.464nm,c0=1.502nmZ=6。
成分与结构 MgO 47.81%,CO252.19%。Mg[CO3]与Fe[CO3]之间为完全类质同像系列。常含少量的Ca和Mn。其晶体结构为方解石型。
形态 通常呈粒状集合体。在风化壳中呈瓷状块体。
物理性质 白色,含铁者呈黄或褐色;玻璃光泽。硬度3.5~4.5;解理平行 完全;瓷状块体具贝壳状断口,密度2.98~3.48g/cm3。随Fe2+含量的增高而增大。
鉴定特征 以其白色、粒状集合体、菱面体解理为鉴定特征。与方解石的区别是硬度稍高于方解石;加冷稀HCl不起气泡,加热后才剧烈起泡。
成因与产状 热液成因的菱镁矿,系由碳酸盐沉积岩经含镁热液交代而成。富含镁的超基性岩受到含碳酸热液的作用,也可以形成菱镁矿。风化作用下,蛇纹岩受地表含碳酸水溶液的作用,常在风化壳底部形成菱镁矿的细脉,或呈脉状填充于裂缝之中。我国辽宁大石桥是世界最著名的菱镁矿产地之一。
主要用途 用于制造耐火材料和提炼金属镁。
菱铁矿Siderite—Fe[CO3]
晶体参数 三方晶系;对称型 。空间群 a0=0.469nm,c0=1.537nmZ=6。
成分与结构 FeO 62.01%,CO237.99%。Mg[CO3]与Fe[CO3]之间为完全类质同像系列。Ca2+与Fe2+的半径存在较大差异,因此,替代有限。其结构为方解石型。
形态 呈菱面体形态,晶面常弯曲。集合体呈粗粒至细粒状,亦有呈结核状、葡萄状、土状。
物理性质 灰黄至浅褐色,部分因氧化而呈深褐色;玻璃光泽。硬度3.5~4.5。解理平行{1011}完全。密度3.96g/cm3。烧灼后的残渣具磁性。
鉴定特征 菱面体完全解理,遇冷稀HCl缓慢起泡。与本亚族其他矿物的区别在于燃灼后的残渣具磁性。
成因与产状 热液成因的菱铁矿见于金属矿脉中;外生成因的菱铁矿见于页岩、黏土或煤层中,规模大者,可作为铁矿开采。所谓泥铁矿便是这种成因的,系在缺氧的环境下,由生物作用或化学沉积作用形成,它的形态常呈致密块状或具放射状构造的结核状。在氧化条件下,易转变为针铁矿和纤铁矿。
主要用途 提炼铁的矿物原料。
菱锰矿Rhodochrosite—Mn[CO3]
晶体参数 三方晶系;对称型 。空间群 a0=0.478nm,c0=1.567nmZ=6。
成分与结构 MnO 61.71%,CO238.29%。与菱铁矿和方解石分别成完全类质同像系列。结构属方解石型。
形态 呈菱面体形态,但比较少见,通常呈粒状、肾状、块状或柱状集合体。
物理性质 玫瑰红色,随钙含量增加而变淡,氧化后呈褐黑色;玻璃光泽。硬度3.5~4.5。解理平行 完全。密度在3.70g/cm3左右,随铁和钙含量的变化而变化。
鉴定特征 菱面体完全解理、较低硬度、遇冷稀HCl起泡,以及其风化表面或裂缝中,常有变成黑色的氧化锰存在,从而与蔷薇辉石、蔷薇石英等呈玫瑰红色的矿物相区别。与其他类似的碳酸盐矿物的区别,以其颜色作为特征。
成因与产状 菱锰矿有热液成因和沉积成因。前者见于铜、铅、锌硫化物热液矿脉中,与方解石、菱铁矿、萤石和石英等共生;或见于交代成因的矿床中,与蔷薇辉石、锰铝榴石等伴生。沉积生成的菱锰矿大量分布于海相沉积锰矿床中。
主要用途 提炼锰的矿物原料。
菱锌矿Smithsonite—Zn[CO3]
晶体参数 三方晶系;对称型3m。空间群R3ca0=0.465nm,c0=1.503nmZ=6。
成分与结构 ZnO 64.90%,CO235.10%。常含Fe2+。此外,尚含少量的Co、Mn2+、Mg、Cu、Pb、Cd。结构属方解石型。
形态 通常呈钟乳状、土状、皮壳状集合体。
物理性质 灰白色微带浅绿或浅褐;玻璃光泽,解理面有时呈珍珠光泽。硬度4~4.5。解理平行 ,但不及前几种矿物完全。密度4.43g/cm3。
鉴定特征 以其形态、产状,以及其粉末加冷稀HCl起泡为特征。与本亚族其他矿物的区分在于密度较大,菱面体解理不完全。
成因与产状 主要见于原生铅锌矿氧化带中,系闪锌矿氧化分解所产生的硫酸锌,交代碳酸盐围岩或原生矿石中的方解石而成。
(二)文石亚族
本亚族包括的矿物为文石Ca[CO3]、碳酸锶矿Sr[CO3]、白铅矿Pb[CO3]和碳酸钡矿Ba[CO3]。各矿物组分之间的类质同像置换表现为有限或不完全替代。
文石Aragonite—Ca[CO3]
晶体参数 正交晶系;对称型mmm。空间群Pmcna0=0.495nm,b0=0.796nm,c0=0.573nmZ=4。
成分与结构 成分同方解石,少量的Sr、Pb替代Ca。结构见前描述。
形态 晶形呈柱状(图11-7A)或尖锥状;常见以(110)为双晶面的文石律接触双晶(图11-7B)和贯穿三连晶(图11-7C),三连晶常呈假六方柱(图11-7C、11-8)。集合体常呈柱状、针状、纤维状或晶簇,也有呈钟乳状、豆状、鲕状。
图11-7 文石的晶形和三连晶
A—柱状晶形;B—聚片三连晶;C—假六方柱状贯穿三连晶
c{001},b{010},m{110},k{011},λ{091},σ{991}
(A、B:据Berry等,1983,修改)
图11-8 文石三连晶
物理性质 无色或白色;玻璃光泽,断口油脂光泽。硬度3.5~4;解理平行{010}不完全;贝壳状断口。密度2.94g/cm3。遇冷稀HCl剧烈起泡。
鉴定特征 文石遇冷稀HCl剧烈起泡,与方解石相似。但以解理和密度不同而区别。
成因与产状 在自然界,文石远比方解石少。由图11-9显示,文石稳定于较高的压力条件下。它的密度大约要比方解石大8%。在蓝闪石片岩(为高压条件下形成)中常见文石与硬玉、硬柱石和石英共生。文石主要是由外生作用形成。常见于许多动物的贝壳或骨骸之中(如头足类和双壳类动物的外壳)。珍珠的主要构成物就是文石。文石在海水中可直接形成。在金属矿床的氧化带中也有出现。内生成因的文石是热液作用最后阶段的低温产物,见于玄武岩、安山岩的气孔中或裂隙中,温泉沉淀物中也有文石产出。
图11-9 方解石和文石的相图
(实验获得的大致稳定区间)
(据Cornelis Klein&Barbara Dutrow,2007)
贝壳珍珠层中文石的择优取向生长
多晶体是许多单晶体的集合,即同种晶质矿物集合体。多晶体中的每个单晶为各向异性体,但如果组成多晶体的各单晶在空间上的排列是完全无规则的,仅为统计上的均匀分布,即在不同方向上取向几率相同,则这种多晶集合体在不同方向上,其力学、电学、光学、耐腐蚀、磁学甚至核物理等方面的性能在宏观上就会表现出相同的现象,具有各向同性的性质。但如果多晶体在其形成过程中,由于受到外界的力、热、电、磁,以及生物作用等各种不同条件的影响,或在形成后受到不同的加工工艺的影响,多晶集合体中的各晶粒不同程度地朝一个或几个特定方向排列和聚集,这种在某些方向上的取向几率增大的现象称为择优取向(preferential tropismpreferential growth)。其性能在宏观上则显示各向异性的性质。
贝壳珍珠层中的文石晶体的生长具有择优取向。通过扫描电子显微镜(SEM)观察,证实了珍珠层由文石晶体与有机基质交替排列而成,呈现出规整有序的“砖墙”式结构。表现为文石沿着珍珠层面定向分布,其结晶学C轴垂直珍珠层层面(相当于(001)面网平行珍珠层面)。它的形成机理一直受到人们的关注,其中的模板说认为珍珠层成分由文石和少量的有机质(总量只占1~5wB/%)构成,薄层有机质充填于文石矿物之间,正是这微量的有机质控制了珍珠层的形成。导致珍珠层中所有的文石小板片的C轴垂直于珍珠层面。
珍珠层是由文石和微量有机质经生物自组装形成的一种优异的天然纳米无机-有机复合材料。它的抗破裂能力比无机成因的文石要高出3000倍以上,如此优异的力学性能与珍珠层的有机质和文石的择优取向有关。珍珠层在形变和断裂过程中,有机基体与相邻的文石层彼此粘合,降低了裂纹尖端的应力场强度因子,增大了裂纹的扩展阻力,从而提高了材料的韧性。
白铅矿Cerussite—Pb[CO3]
晶体参数 正交晶系;对称型mmm。空间群Pmcna0=0.515nm,b0=0.847nm,c0=0.611nmZ=4。
成分与结构 Pb O 83.53%,CO216.47%。有时含Ca、Sr、Zn。结构属于文石型。
形态 晶形常呈柱状、板柱状和假六方双锥状(图11-10A、B)。常以(110)为双晶面形成双晶或三连晶(图11-10C)。集合体常呈粒状、块状、钟乳状等。
物理性质 白色或灰白色;金刚光泽。硬度3~3.5;解理平行{110}和{021}不完全;贝壳状断口。密度6.55g/cm3。
鉴定特征 以其金刚光泽、密度大和产状为特征。
成因与产状 是铅锌硫化物矿床氧化带中的次生矿物。系由方铅矿氧化成铅矾Pb[SO4],再受碳酸水溶液作用而形成。
图11-10 白铅矿的晶形和三连晶
A—假六方双锥状晶形;B—板柱状晶形;C—贯穿三连晶
c{001},b{010},m{110},i{021},p{111},r{130}
(据Berry等,1983,修改)
主要用途 为提炼铅的矿物原料。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)