断裂(层)及其活动性调查

断裂(层)及其活动性调查,第1张

活动断层的定义随不同国家与地区及不同学者而有所不同。目前学界尚无统一标准。断层的活动具有时代性的消长,我国地质学界和工程地震学界普遍认为,活动断层是指晚第四纪以来有活动的断层。但由于各地区的地质环境不同,研究程度不同,各学科的研究目的和研究方法不同,使得国内外学者对活动断层的含义和时限认识也不尽相同(徐锡伟等,2006;景彦君等,2009)。

断裂构造可能会成为CO2泄漏通道,需要对断裂构造的特征进行调查。如存在活动断裂,可能会引起地层断裂、诱发地震的危险,对CO2地下储存库危害较大,因此必须开展断裂及其活动性调查。

(一)断裂调查

1.调查方法

采用大、中、小构造相结合,遥感解译与实地观察相结合的方法,首先确定断层是否存在,然后进一步收集有关资料。当已知或怀疑有断裂时,所需的调查应包括地层和地形分析、大地测量和地球物理调查、槽探、钻孔、沉积物或断层岩的年龄测定、当地的地震调查和任何其他用以弄清运动最近发生时间的适用技术,对在照片上由遥感成像显示的一切线性地形特征等,均应进行足够详细的调查,以解释它们的成因。

断层证据主要有:

1)地貌标志(断层崖、断层三角面、错断的山脊、水系、泉水的带状分布等);

2)构造标志(线状或面状地质体的突然中断和错开、构造线不连续、岩层产状急变、节理化和劈理化窄带的突然出现、小褶皱剧增以及挤压破碎、擦痕等);

3)地层标志(地层的缺失或不对称重复);

4)岩浆活动和矿化作用(岩矿、矿化带或硅化等热液蚀变带沿一条线断续分布);

5)岩相厚度标志(岩相和厚度的显著差异)。

2.调查内容

1)断层两盘的地层及其产状变化;

2)断层面产状(直接测量、根据断层“V”字形法判定,借助于伴生构造判定);

3)断层两盘的相对运动方向(主要根据两盘地层的新老关系、牵引褶皱、擦痕、阶步、羽状节理、两侧小褶皱、断层角砾岩等);

4)断层破碎带的宽度;

5)断层岩类型;

6)断层的组合形式(如正断层的地堑和地垒、阶梯状断层、箕状构造、逆断层的单冲型、背冲型、对冲型、楔冲型、双冲构造)。

(二)断裂活动性鉴定

1.断裂活动性鉴定对象

断裂活动性鉴定的对象是“主要断层”,一般是指:

1)区域地震构造图上有标示的区域性断层;

2)长度大于10km或大于15km的断层;

3)对其活动时代的认识有分歧,并且可能影响到场地地震危险分析结果的断层;

4)晚更新世以来有活动迹象的断层;

5)通过场址区并且与工程场址区安全性评价相关的断层;

6)与破坏性地震特别是M≥6级地震在空间位置上相关的断层;

7)与现代小震密集活动或条带状分布相关的断层;

8)可能延伸到近场区内的活动断层;

9)指向工程场地,并且可能对工程场址区安全性评价有所影响的断层。

2.活动性鉴定内容

1)断层的活动时代。断层活动时代的鉴定是判定该断层是否是发震构造,是否对场址区拟建工程产生重要影响,不能改变路由的管线工程是否采取相应的抗断措施的主要依据。

2)断层的活动性质。对于活动断层而言,其活动性质是划分相关潜在震源区并确定其震级上限的重要依据。潜在震源区范围与边界的确定,与活动断层的性质(包括产状)密切相关。在近场区发震构造评价工作中,应通过野外现场调查或采用成熟技术方法的探测,查明活动断层的活动性质,鉴别出正断层、逆断层、走滑断层、正-走滑断层、走滑-正断层、逆-走滑断层、走滑-逆断层等。

3)断层的运动特性。断层的运动包括“蠕滑”和“黏滑”两种特性。以地震的方式释放的能量往往只占活动断层应变积累的一部分。

4)断层分段性。断层的分段性是确定相应潜在震源区边界及其震级上限的主要依据。断层的分段性研究包括活动性分段和破裂分段两方面的内容。

活动性分段主要包括活动时代与活动性质分段。断层活动时代的差别是断层分段性活动最为显著的标志,在调查中,应当首先加以鉴别,判定“活动的段落”和“不活动的段落”。对于活动的段落,还应视工程的需要和可能性,进一步对其最新活动时代以及活动性质的差别加以细分。

破裂分段是一项难度很大,专业性更强的具有研究性的工作。由于它具有较大的不确定性,只有在工程必需的情况下,可进行专题性研究。

3.活动断裂调查鉴定技术

对目标区内的活动断裂进行详细探测和定期观测,调查其规模、性质、方向、活动强度、特征、地貌地质证据及其活动规律,并初步评价各活动断层的地震危险性。调查过程中应安排槽探、浅井工作,必要时施以地球物理勘探等手段,并采集样品进行地质年代测试。

我国活动断裂调查及研究方法研究较为成熟,调查研究技术手段有地球化学异常、地球物理异常等,并且尝试给出最佳的组合方法。邓起东等(2007)指出小间距钻探和槽探是研究断层新活动的有力手段,可以揭露活动断层最新活动和古地震错动历史的最好技术,并且中国地震局《活动断层探测(DB/T15—2009)》中给出了槽探、钻孔探测的精度适用范围及技术要求,《工程场地地震安全性评价》(GB17741—2005)也介绍了活动断裂调查鉴定技术。

1)进行主要断层活动性鉴定,应以地质地貌学的调查分析方法为主。在进行地质地貌调查与分析时,应注意:

①宏观人手。如断层所在地区的新构造活动背景、断层与第四纪新地层的关系、断层与地貌面的关系、断层的构造地貌特征等。

②微观取证。仅根据宏观现象说明断层的活动性是不足取信的,应选择典型地段和典型部位,通过现场调查,获得断层活动性确切的地质地貌证据。

③精细分析。对于活动断层,应采用断层地貌分析、断层活动性参数确定、古地震探槽、活动性分段、活断层填图、新年代学测定等多种技术方法进行现场调查取证,必要时进行活断层填图,详细鉴定其活动性;

④综合判定。应综合地震活动性、现代构造应力场等不同学科的资料,综合断层活动性的宏观及微观资料,进行断层活动性的综合判定。

2)断层最新活动时代的鉴定,在很大程度上要借助甚至依赖于新年代学测定技术。年代测定方法选择上应因地而异,有所侧重,同时又尽可能采用多种方法进行综合测年。一般来说,对有第四纪地层出露的地区,可采用放射性碳(14C)法、释光法、孢粉分析法;对基岩地区的断层泥的测年可采用释光法、电子自旋共振(ESR)法、钾-氩(K-Ar)法和电镜(SEM)扫描法等。

3)在覆盖区,已有资料不能确定已知主要断层的活动时代时,应选用地球物理、地球化学、地质钻探和测年等手段进行勘查。隐伏断层的活动性鉴定一般应遵循以下步骤:

①进行隐伏断层位置的初步探测。根据航、卫片判读和已有的地质、地貌、化探、物探、钻探资料进行综合分析,初步推测断层的位置、延伸和展布形态,然后选择适宜的探测手段,布置探测路线。

②进行隐伏断层的综合探测。在初步推测出断层的大体位置后,进一步按照先粗后细的原则,选择合适的物探或化探方法,初步确定断层位置。再进行浅层物探,如浅层地震勘探、地质雷达等,以查明隐伏断层的确切位置和断距。

③根据具体情况进行钻探和槽探,进一步帮助确定断距、断面、断错地层及上覆地层,并采集合适的样品,综合分析其活动性。

陈振宏1 王一兵1 苏现波2

(1.中国石油勘探开发研究院廊坊分院,廊坊0650072.河南理工大学资源环境工程学院,焦作454000)

摘要:煤体变形与煤层气储层渗透性存在密切联系。查明含煤岩系岩体结构,定量评价煤岩体变形,对煤储层渗透性预测具有重要指导意义。通过大量野外观测、结合室内扫描电镜、光学显微镜及原子力显微镜探测,研究了沁水盆地南部煤层气藏储层变形特征及空间展布,探讨了构造形迹、煤体变形程度与岩体结构之间的内在关系,并揭示了其成因。研究结果认为,沁南地区煤体宏观变形以脆性变形为主,割理大部分被方解石充填,对储层渗透性贡献不大煤岩体变形取决于岩体强度与结构,特别是软煤发育厚度和比率的空间展布与强度因子、分形维数有关。同时研究发现,含煤岩系节理和煤层裂隙走向NE-SW居主导地位,与现今的主应力场方向一致,寺头断层对煤体严重变形的影响有限。在煤层气下一步开发施工中,应尽力避免在软煤强烈发育区布井。

关键词:煤层气 岩体结构 脆性变形 强度因子 软煤

基金项目: 国家 973 项目 “高丰度煤层富集机制及提高开采效率基础研究”( 2009CB219607) 。

作者简介: 陈振宏,男,1979 年生,湖南桃源人,博士,主要从事石油天然气地质及煤层气地质方面的研究。地址: 河北省廊坊市万庄廊坊分院煤层气研究所。电话: 010 - 69213542 137930613041 E - mail: cbmjimcoco@126. com

Deformation Characters and Formation Mechanism of Coal Seams in South Qinshui Basin

CHEN Zhenhong1,WANG Yibing1,SU Xianbo2

( 1. Langfang Branch,Research Institute of Petroleum Exploration and Development, CNPC,Langfang 065007,China2. Institute of Resource and Environment EngineeringHenan Polytechnic University,Jiaozuo 454000,China)

Abstract: The coal deformation is a critical controlling factor of coal reservoir permeability. Researching the coal construction and quantitatively evaluating coal deformation,essential parts of the reservoir permeability pre- diction,are significant. Through abundant field reconnalssance,SEM,OM and AFM,the reservoir deformation characters,spatial distribution& formation mechanism of coalbed methane and the relationship between the region- al structure & coal deformation and rocks construction,were analyzed&discussed here. It was proved that in the south,Qinshui basin,the brittle deformation was dominant and cleat permeability was litter,in which filled cal- cite. The coal deformation was decided by the strength and construction of rock mass. Especially,the soft coal thickness and rate are associated with strength divisor&fractal dimensionality. Moreover, the strike of coal fractures&joints is main NE - SW,as current main stress field,and Sitou fault litter affects the coal deforma- tion. So in the future CBM developing,wells in the intense soft coal area were avoided.

Keywords: coalbed methaneconstruction of rock massbrittle deformationstrength divisorsoft coal

引言

煤作为一种低杨氏模量、高泊松比的特殊岩石,发生韧性变形所需的温度、压力远远低于无机岩石。正是由于煤的这种特殊的变形行为,使得煤体变形与煤层气储层渗透性和煤与瓦斯突出存在密切联系。煤岩体在地质演化过程中的变形受岩体强度、构造应力场、温度和边界条件等的控制[1~4]。在同一构造应力场中不同岩性岩层或岩性组合的岩体会表现不同的岩体力学性质和形变特征,即在局部范围内控制煤岩体变形的主导因素是岩体结构。

对于沁南地区无烟煤储层,割理严重闭合或被矿物质充填,外生裂隙是煤层气运移产出的通道[5~8]。而外生裂隙是煤体变形的结果,适中的煤体变形形成的碎裂煤是本区渗透性最好的储层。因此,根据勘探、开发阶段的煤层气井资料,查明含煤岩系的岩体结构,定量评价煤岩体变形特征,可以为煤储层渗透性评价做出借鉴,预测未开发区储层渗透性,为勘探开发部署提供依据。

1 沁水盆地南部地区煤岩宏观变形特征

沁南地区山西组3#煤层下部通常发育有一层不足1m的软煤,多为鳞片状的糜棱煤,局部发育碎粒煤,个别地区还存在整层均为糜棱煤的透镜体,透镜体一般不超过20m×50m。

图1 沁水盆地南部煤岩割理发育特征

通过钻井煤心、井下煤壁观测,结合测井响应,发现煤体宏观变形以脆性变形为主,其主要变形标志为割理形成初始阶段的格里菲斯裂隙(图1a)、被方解石充填的雁行排列的割理(图1b)。割理成因很复杂,一般认为是同沉积压实作用、成岩作用、侧向古构造应力、干缩作用和煤化作用等综合作用的结果[9~12]。

煤中另一种脆性变形标志是外生裂隙。当外生裂隙不发育时,煤体保持原生结构当外生裂隙发育时,煤体破坏为碎裂煤,这类煤的煤心往往为碎块状,但碎块有强度。

2 沁南地区煤岩微观变形特征

借助扫描电镜,系统观测煤的微观孔隙结构,发现煤岩割理被方解石充填(图2a),或者割理闭合(图2b),基质孔隙(气孔)发育(图2c)。

图2 沁南地区煤岩的微观特征(SEM)

光学显微镜下,煤体脆性变形标志主要为一些外生裂隙(图3)。

图3 光学显微镜下沁南地区煤岩外生裂隙,反光,×15。

扫描电镜下,煤中韧性变形标志主要为褶皱、残斑和SC构造等(图4)。

值得注意的是,煤岩脆韧性变形识别与观测尺度有关,宏观上观测的韧性变形,在微观上仍可发现脆性变形现象(图5)。但在超微条件下,很难观测到韧性变形现象。

3 沁南地区煤岩变形空间展布

煤心观测和测井响应显示,沁南地区樊庄区块软煤普遍发育在煤层的下部,夹矸层将其与上部的硬煤隔开,厚度0~1.15m,平均0.7m,所占煤层总厚的比率为0~0.177,平均0.114(图6)。

北部的固县地区软煤厚度和比率最高,特别是从G12-9~G7-12软煤厚度超过1m、比率超过0.15,向东软煤发育程度逐渐降低,其软煤相对发育的主要控制因素为褶皱的影响,软煤发育基本沿着背斜的轴部展布。寺头断层并没有对煤体结构造成严重影响,位于寺头断层附近的G4-7,G2-7,G2-6等井软煤的厚度和比率还没有褶皱轴部高,且北西向褶皱与软煤发育的关系最密切。固县地区是整个樊庄区块软煤最发育的地区,且分布在本区的煤层气井距寺头断层最近,可见寺头断层或多或少对煤体变形有一定影响。

图4 煤体韧性变形微观标志(SEM)

图5 煤体韧脆性变形标志(SEM)

樊庄地区软煤发育受北西向褶皱控制,厚度一般不超过1m,比率多在0.15之下,最发育区位于褶皱轴部(F14-13,F13-14),翼部最低(F12-9)。

图6 沁南地区樊庄区块软煤厚度等值线图

蒲池玉溪地区软煤最不发育,软煤厚度一般不超过1m,多数在0.5m以下,比率多在0.1以下。同样沿北西向褶皱轴部软煤发育,但因近东西向褶皱的叠加使得软煤分布复杂化。

总体上,整个樊庄区块固县软煤最发育,其次为樊庄,蒲池玉溪地区最不发育。软煤发育程度与北西向褶皱关系最为密切,多位于褶皱轴部。寺头断层对煤体结构有一定的影响,但不严重。

4 成因分析

4.1 岩体结构对煤岩变形的控制作用

研究区除了边界断层—寺头断层外,区内稀疏分布三组小断层:近南北向、近东西向和北东向。褶皱非常发育,大体可区分出北西向和近东西向两类。这些褶皱的形成与岩体结构有着密切关系。褶皱的形成严格受岩体强度和结构的控制,易于发生强烈变形的低强度因子和分形维数岩体均位于褶皱的轴部。强度因子最高的蒲池玉溪地区,通过断层形式来吸收应力,形成了密集的褶皱强度因子最低的固县地区褶皱不如蒲池玉溪发育,这是该地区通过形成软煤的顺煤层剪切吸收应力的结果。

煤层具有低杨氏模量、高泊松比,相对含煤岩系统计层段内其他岩层,在相对较低的温度和较弱的构造应力作用下也可达到较深的变形程度。因此煤层中记录的构造应力场演化信息要比其围岩详细和全面。对比软煤厚度和比率的空间展布与强度因子、分形维数和褶皱的关系,发现:

Ⅰ:低强度因子和厚层岩层较多的分形维数低值区,含煤岩系以韧性变形为主,位于多褶皱轴部,煤体变形程度深,以顺煤层剪切使煤体发生韧性变形、形成“软煤”来消减构造应力。

Ⅱ:高强度因子和厚层岩层较少的分形维数高值区,一般位于褶皱的轴部,含煤岩系以脆性变形为主,软煤不发育。

Ⅲ:区域上,固县地区强度因子和分形维数最低,但褶皱和断层不发育,唯一吸收构造应力的途径是顺煤层剪切变形形成软煤。因此,固县地区是本区软煤最发育的地区。蒲池玉溪地区强度因子和分形维数最高,但吸收构造应力的途径不是形成断层,而是密集发育的褶皱,软煤最不发育。樊庄地区介于二者之间。

也就是说,在局部范围内构造应力的性质与大小基本一致的前提下,岩体强度与结构决定了煤岩体的变形,不同地区的煤岩体可通过不同的变形途径来吸收应力。

4.2 应力场对煤岩变形的影响

4.2.1节理发育特征

通过对樊庄区块含煤岩系露头大量野外观测,发现本区含煤岩系,尤其是二叠系下石盒子组中细砂岩、上石盒子组粉砂岩发育多组高角度共轭剪节理,以NESW向和NWSE向为主,倾角平均为82°,甚至有些节理倾角达90°。节理沿走向延伸有从几个厘米到几米的,部分达几十米。节理密度从2条/米到20条/米不等,平均密度为10条/米。一般来说,脆性岩层中的节理密度要比同一厚度的韧性岩层中的节理密度大,节理密度的大小直接受到岩层所受构造应力大小的控制,在构造应力集中的地带,如褶曲转折部位及断层带附近,节理的密度相对要大得多。

节理之间多有切割,反映出力学性质的多样性和形成的多阶段性。据节理的切割关系、分期配套分析结果,厘定为四套共轭剪节理(图7)。第一期共轭剪节理由Ⅰ组和Ⅱ组配套组成,锐夹角指示近SN向的挤压,形成最早第二期由Ⅰ组和Ⅲ组配套组成,锐夹角指示NWSE向的挤压第三期由Ⅰ组和Ⅳ组配套组成,锐夹角指示NNESSW向的挤压第四期由Ⅱ组和Ⅴ组配套组成,锐夹角指示NESW向的挤压,形成时间最晚。

图7 节理的分期配套

4.2.2 构造应力场分析

通过大量的野外观测,在上述含煤岩系节理特征系统描述的基础上,综合前人的研究成果[13~16],恢复了中生代以来构造应力场期次:

①印支期近SN向挤压应力场

印支期近SN方向的挤压作用,形成近EW向褶皱,伸展作用表现为近NE和NS向的正断层,褶皱和断层规模都很小,此时的寺头断层已经开始发育。

②燕山喜马拉雅早期的NWSE向的水平挤压应力场

燕山喜马拉雅早期NWSE向挤压应力场,在沁水盆地普遍存在。挤压作用使本区整体成为NE向向斜,西部的寺头正断层进一步强化,与之平行的近NE、NNE向的、规模较小的正断层形成。

③喜马拉雅晚期的NNESSW向的近于水平的挤压应力场

喜马拉雅晚期NNESSW方向的挤压作用,形成区内规模较大、叠加在燕山喜马拉雅早期NE向褶皱之上的NW向褶皱,此时的寺头断层由原来的张性逐渐转化为压性。

④第四纪以来新构造期的NESW向的近水平挤压应力场。

第四纪以来的新构造运动期,伴随着霍山和太行山的不断隆起,在沁水块坳中产生的NESW向的近水平挤压应力场,形成了NW向小褶皱,这种构造应力场一直持续到现今。

本区岩石节理和煤层裂隙NESW居主导地位,与现今的主应力场方向一致。

4.2.3 应力场对煤岩变形的影响

煤层中外生裂隙的产状与上下围岩中的节理产状基本一致。山西组3号煤储层中的大裂隙系统具有明显的方向性,表现为NESW和NWSE两个优势方向,且以NESW向更为发育。这与岩石节理走向的优势方向基本一致,煤层主裂隙的方向与现今应力场最大主应力的方向也基本一致。

这一裂隙与应力场的耦合关系,造成了在煤层气井不断排采、流体压力不断降低过程中,裂隙张开度逐渐增加,进而导致煤层渗透率随最大主应力差的增大而呈现数量级的增大现象。

这正是本区煤层气井稳定高产的主要控制因素之一。

4.3 断层对煤体变形的影响

根据固县地区寺头断层附近煤层气井的揭露情况,发现该断层对煤体严重变形的影响有限。

(1)紧靠断层的煤层气井显示煤体没有严重破坏为软煤

(2)北部固79井,储层压力还有1.5MPa,产能就达2700m3/d,而且周围的井固610、固710、固711、固712、固89产能都达2000m3/d以上。但固78、固88的产能较低,不足400m3/d。由产能分析可知寺头断层对煤体变形有影响,在固县地区,由于断层落差较小,影响范围有限,一般不超过100m。随断层落差的增加,影响范围将增加

(3)寺头断层影响构造应力场在本区的展布,进而控制着区内构造的形成和展布。对煤体变形的影响为:沿断层形成软煤条带,其宽度与断层的落差有关,落差越大,软煤宽度越大,一般不超过500向东逐渐过渡为碎裂煤分布区,也是储层渗透性最佳区,这一区域的宽度难以准确确定。根据目前煤层气井的测试和排采资料,这个条带的宽度在1~2km左右进一步向东为基本不受影响的带,原生结构煤发育。

结论与建议

(1)沁南地区煤体宏观变形以脆性变形为主,割理被方解石充填,对储层渗透性贡献不大韧性变形标志包括褶皱、残斑和SC构造等。

(2)岩体强度与结构决定了煤岩体的变形。软煤发育程度与北西向褶皱关系密切,其厚度和比率的空间展布与强度因子、分形维数有关。

(3)含煤岩系节理和煤层裂隙走向NESW居主导地位,与现今的主应力场方向一致,寺头断层对煤体严重变形的影响有限。

参考文献

[1] Guidish T M,Kendall CG C Kendall,Lerche I et al. 1985. Basin evaluation using burial history calculations: an over- view. AAPG Bulletin,69 ( 1) : 92 ~ 105

[2] Law B E. 1993. The relationship between coal rank and cleat spacing: Implications for the prediction of permeability in coal. In: Proceedings of the 1993 International Coalbed Methane Symposium,Birmingham,AL,May 17 - 21,PP: 435 ~ 441

[3] 苏现波,谢洪波,华四良 . 2003. 煤体脆 韧性变形识别标志 . 煤田地质与勘探,31 ( 6) : 18 ~ 21

[4] 刘俊来,杨光 . 2005. 高温高压实验变形煤流动的宏观与微观力学表现 [J] . 科学通报,50 ( B10) : 56 ~ 63

[5] 傅雪海,秦勇 . 2001. 煤割理压缩实验及渗透率数值模拟 [J] . 煤炭学报,26 ( 6) : 573 ~ 577

[6] 张建博,秦勇,王红岩等 . 2003. 高渗透性煤储层分布的构造预测 [J] . 高校地质学报,9 ( 3) : 359 ~ 364

[7] 苏现波,林晓英,柳少波等 . 2005. 煤层气藏边界及其封闭机理 [J] . 科学通报,50 ( 10) : 117 ~ 120

[8] 陈振宏,贾承造,宋岩 . 2007. 构造抬升对高低煤阶煤储层物的不同影响及机理 [J] . 石油勘探与开发,26( 2) : 62 ~ 67

[9] Mckee C R,Bumb A C,Way S C et al. 1986. Use of the correlation of permeability to depth to evaluate the production potential of the natural gas in coal seam. Quarterly Review of Methane form Coal Seams Technology,4 ( 1) : 35 ~ 62

[10] Close J C. 1993. Natural Fracture in Coal. In: Hydrocarbons from Coal,Law B E and Rice D D,AAPG Studies in Geology #38,119 ~ 132

Gayer Rand Harris I. 1996. Coalbed Methane and Coal Geology,The Geological Society,London,1 ~ 338

[11] 陈振宏,贾承造,宋岩等 . 2008. 高、低煤阶煤层气藏物性差异及其成因 [J]. 石油学报,2 ( 印刷中)

[12] 秦勇,张德民,傅雪海等 . 1999. 山西沁水盆地中、南部现代构造应力场与煤储层物性关系之探讨 [J] . 地质评论,45 ( 6) : 576 ~583

[13] 赵孟军,宋岩,苏现波等 . 2005. 决定煤层气地球化学特征的关键地质时期 [J] . 天然气工业,25 ( 1) :51 ~ 54

[14] 秦勇,宋党育 . 1997. 山西南部晚古生代煤的煤化作用及其控气特征 [J] . 煤炭学报,22 ( 3) : 230 ~ 235

[15] 陈振宏,宋岩 . 2007. 高、低煤阶煤层气藏成藏过程及优势地质模型 [J] . 新疆石油地质,26 ( 3) : 275 ~278


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/119701.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-13
下一篇2023-03-13

发表评论

登录后才能评论

评论列表(0条)

    保存