在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!
有关材料学的论文范文篇1论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成
石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.
另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10]然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].
作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.
基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.
1实验部分
1.1原材料
苯胺(AR, 国药集团),经减压蒸馏后使用氧化石墨烯(自制)过硫酸铵(APS, AR, 湖南汇虹试剂)草酸(OX, AR, 天津市永大化学试剂)十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).
1.2PANIF的制备
PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备
采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.
1.4PANIF/rGO复合材料制备
按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.
1.5仪器与表征
用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析用德国Siemens公司Xray衍射仪进行XRD分析电化学性能测试使用上海辰华CHI660c电化学工作站.
电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.
比电容计算依据充放电曲线,按式(1)[15]计算:
Cs=iΔtΔVm.(1)
式中:i代表电流,AΔt代表放电时间,sΔV代表电势窗,Vm代表活性物质质量,g.
2结果与讨论
2.1形貌表征
图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.
2.2FTIR分析
图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.
2.4电化学性能分析
图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.
图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5
值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.
氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.
3结论
采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.
有关材料学的论文范文篇2浅谈水泥窑用新型环保耐火材料的研制及应用
1 概述
随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。
发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:
我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:
这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。
2 水泥窑烧成带新型环保耐火材料的研制
2.1 研制思路
目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。
2.2 试验与研究
2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:
为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:
2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。
2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。
2.3 产品的性能
2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐
火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。
2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。
2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。
2.4 产品的应用
新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。
3 结论
【概述】
采用溶剂热法在镁合金血管支架表面制备了具有微纳米结构的锐钛矿氧化钛涂层,研究了溶剂热反应条件对涂层微观形貌的影响。结果表明,通过改变反应时间,HF含量,及反应溶液中氟离子浓度,可获得不同微纳米结构的氧化钛涂层。随着反应时间延长,锐钛矿晶体形貌由八面体向片层状转变且致密化;随着反应温度升高,片层微结构逐渐增多、片层的厚度逐渐减小;随着溶液中HF含量增加,片状氧化钛的分布逐渐稀疏,涂层化效率降低;随着F-离子浓度增加,片状氧化钛的排列形式趋于分散,由多片交叉叠加向单片演变。反应条件为160 ,10 h , 0.25 mL / HF(40 wt.%), 0.25 mL / NH4F(0.2 M)时,在镁合金血管支架表面制备出了均匀致密,呈片状规整排列的微纳米结构氧化钛涂层,表面粗糙度为350.7 nm。
【研究亮点】
目前报道的镁合金表面氧化钛涂层多为粗糙度极小且微观形貌不可控的涂层,而针对氧化钛涂层微纳米结构设计的研究报道较少。由于细胞在生物材料表面具有特异性吸附行为,若通过特殊工艺制备出具有一定表面粗糙度的微纳米结构氧化钛涂层,将有利于促进血管支架植入人体后的表面内皮化,从而改善支架对病变血管的疗效。基于以上考虑,利用溶剂热反应法在镁合金血管支架上合成了具有特殊微纳米结构的氧化钛涂层,研究了溶剂热反应条件对氧化钛涂层微纳米结构和涂层整体形貌的调控作用。
【研究背景】
钛合金、镁合金等合金因具有良好的力学性能和生物相容性,被越来越多地应用于生物医用材料及器件的研制。而生物医用镁合金材料可在人体内被降解吸收,使得近年来镁合金在可降解心血管支架领域成为研究热点。研究发现,镁合金血管支架目前存在的关键问题是在人体内的降解速率过快,导致支架过早地丧失力学支撑作用。为减缓镁合金血管支架的降解速率,国内外学者开展了大量针对性研究,主要集中在通过表面改性,提高生物医用镁合金的耐蚀性,从而减小其降解速率。如通过各种手段在镁合金表面制备氧化钛、聚乳酸、PLGA、PCL、氟化镁等具有良好生物相容性的防护涂层,较好地改善了镁合金的降解行为。
表面涂层之所以能够有效降低镁合金的降解速率,其根本原因是在镁合金表面形成耐腐蚀层,从而阻断镁基体与腐蚀环境的直接接触。各种涂层材料中,无机涂层是镁合金表面改性选用较多的材料,如TiO2、ZrO2、ZnO等,均能在一定程度上改善镁合金的耐蚀性,减缓镁合金基体的降解速率。其中,氧化钛涂层作为一种无机惰性涂层,可以有效阻止金属离子的释放,起到良好的腐蚀保护作用。除此之外,氧化钛涂层具有优良的抗凝血性,作为镁合金血管支架的表面涂层显示了较好的应用前景。有研究者采用磁控溅射工艺在生物镁合金上制备出氧化钛涂层,证实了该涂层可显著降低镁合金的降解速率。
【研究方法】
镁合金血管支架(合金成分为Mg–2Zn–0.46Y–0.5Nd)在电压为10 V,电流为0.2 A条件下电解抛光5 min,之后在无水乙醇中超声清洗5 min,自然干燥。在容积为28 mL的聚四氟乙烯内胆中加入15 mL无水乙醇作为溶剂,用微量移液器滴入少量质量分数为40%的氢氟酸(HF),然后加入0.5 mL钛酸四丁酯(TBOT)作为溶剂热反应产生二氧化钛的前驱体,将混合溶液磁力搅拌10 min后添加0.25 mL氟化铵水溶液(NH4F),继续磁力搅拌10 min。将准备好的的镁合金血管支架置于反应溶液中,以一定倾斜角度靠于容器内壁。最后将密闭的聚四氟乙烯内胆放入不锈钢反应釜内,在电热鼓风干燥箱内加热至反应温度,反应4 ~10 h,溶液中的前驱体在高温高压下水解生成二氧化钛,并在血管支架的表面形成涂层。将血管支架取出,在去离子水中超声清洗数次,以去除其表面附着的多余反应产物。试验所选取的工艺参数见表1。
注:NH4F的添加量均为0.25 mL,加入前先配制成不同浓度的水溶液。
采用X射线衍射仪(XRD,PANalytical X'Pert3 Powder,Cu Ka,35 kV,30 mA)分析涂层的物相,衍射角为20 80 ,步长为0.01 。采用扫描电镜(SEM,Hitachi SU8000)观察涂层的微观形貌,并配合能谱散射仪(EDS,Cambridge)分析涂层的元素与含量。利用原子力显微镜(AFM,Bruker MultiMode8)分析涂层的微观形貌及表面粗糙度,测试时采用非接触模式。
【研究结果】
溶剂热反应条件160 , 10 h,0.25 mL / HF(40 wt.%),0.25 mL / NH4F(0.1 M),镁合金支架表面涂层的XRD图谱、微观形貌和原子力表面分析分别见图1~3。从图1可以看出,该条件下涂层的物相为锐钛矿TiO2相。通过溶剂热法在镁合金支架表面制得了致密、均匀的氧化钛涂层,该涂层由约50 nm厚、1 mm宽的层片状结构组成。氧化钛涂层与镁合金基体之间存在较好的结合状况。
图1 涂层材料的XRD图谱
(a) 有涂层的镁合金血管支架
(b) 表面涂层局部放大图
图2 镁合金血管支架表面氧化钛涂层形貌图
原子力显微分析得出该涂层的表面粗糙度为350.7 nm。制备的微纳米结构氧化钛涂层具有宏观平整、微观粗糙的结构特征,这将为深入研究材料表面特征与医用材料生物相容性之间的关系开辟新途径。
图3 TiO2涂层的AFM表面分析
在160 , 0.15 mL / HF (40 wt.%) , 0.25 mL / NH4F (0.1 M)条件下,观察氧化钛涂层形貌随时间的变化规律。反应开始阶段并没有形成连续的涂层,镁合金基体大部分处于裸露状态,但已形成了尺度小于1 mm的八面体和片层状锐钛矿晶体,这些晶体以“嵌入”方式与基体结合,说明氧化钛晶体的形核与生长与镁合金基体的晶体结构有直接关系。这种原位生长模式决定了涂层与基体存在较好的结合情况。随着反应时间延长,7 h后涂层变得致密,并出现较多的片状结构,八面体晶体逐渐减少。反应10 h后镁合金表面已经完全被片状氧化钛组成的致密涂层覆盖。
(a) 4 h (b) 7 h (c) 10 h
图4 氧化钛涂层形貌随反应时间的变化
在0.15 mL / HF (40 wt.%), 0.25 mL / NH4F (0.1 M)条件下,考察了在不同反应温度条件下的氧化钛涂层形貌,见图5。图5a和图5b为140 和180 溶剂热反应10 h后涂层的SEM图。同样条件下,结合反应温度为160 时的涂层形貌(见图4c),可以看出,随着反应温度升高,氧化钛片层微结构特征逐渐明显,主要表现为片层结构逐渐增多、片层的厚度逐渐减小。其中,140 时可明显看到片层结构出现,但此时片层结构较为稀疏。当反应体系温度升至160 后,出现了更明显的片层结构特征。180 下涂层由细小、密集分布的微层片构成。这表明反应温度越高,涂层的微结构特征越明显,即氧化钛片层结构的数量越多、厚度越小;同时,锐钛矿晶体分化得越细,形成的涂层整体形貌越致密。
(a) 140
(b) 180
图5 反应温度对氧化钛涂层形貌的影响
(a) 0.35 mL
(b) 0 mL
图6 溶液中HF酸加入量对氧化钛形貌的影响
在选用的溶剂热反应体系中,HF的加入量须严格限定在一定范围。图6为溶液中HF加入量对氧化钛形貌的影响。试验发现,当加入较多的氢氟酸(质量分数为40%的HF,0.35 mL),由于前驱体钛酸四丁酯的水解变慢,经过10 h反应后,基体表面形成的氧化钛数量极少,导致涂层极稀疏,氧化钛多以片状晶体形式在基体表面原位生长,见图6a。然而,当反应溶液未添加氢氟酸,则镁合金基体在反应10 h后仍保持其原始表面,没有氧化钛形成,见图6b。这是由于当溶液中的氢氟酸含量较高,导致前驱体的分解速率过快,生成的氧化钛晶核不能与基体充分结合起来。事实上,在不加氢氟酸的条件下,反应1 ~2 h后即有大量的白色沉淀生成,只是这些产物并未与基体结合,而是直接散落在反应容器底部。
(a) 0.1 M
(b) 0.2 M
图7 溶液中F-离子浓度对氧化钛涂层形貌的影响
F-离子浓度对涂层的形貌与微观结构有重要影响,见图7。F-离子的增多导致氧化钛涂层中片状结构排列由密变疏,且由多片向单片逐渐演变。
可以看出,反应时间、反应温度、氢氟酸含量、氟离子浓度等4个参数对氧化钛涂层的微形貌有重要影响。其中,氢氟酸含量的影响作用最大,也是能否形成致密涂层的最关键因素。向15 mL的反应溶液中加入0.25 mL氢氟酸的条件下,得到了理想的氧化钛涂层。然而,增加0.1 mL微量的氢氟酸后(0.35 mL),显著减小了前驱物的水解程度,在基体表面未能形成致密的涂层,从而限制了其实际应用。可见,制备体系需严格控制氢氟酸含量。
研究表明,锐钛矿氧化钛晶体中各晶面的表面自由能不同,(110)、(001)、(010)、(101)等晶面的表面自由能分别为1.09 J / m2、0.90 J / m2、0.53 J / m2和0.44 J / m2。根据Wulff理论,表面自由能较高的晶面,在晶体自然生长中不会被暴露;而表面自由能较低的晶面,最终会暴露出来。故锐钛矿晶体的暴露面一般为表面自由能较低的(101)晶面。本课题的氧化钛晶体中(101)晶面所占的比例很小,片状微纳米结构是氧化钛晶体在发育过程中沿着和晶向优先生长所得到的,这种晶体生长模式与F-离子的作用存在密切关系。在锐钛矿晶体最初生长过程中,如果有一定数量的F-离子吸附在(001)晶面上,就会大大限制氧化钛晶体沿c轴即方向的生长。YANG H G等基于第一性原理,对各种离子吸附情况下锐钛矿(001)和(101)晶面表面能进行了计算,结果表明吸附F-离子后,(001)面表面能显著低于吸附F-离子的(101)表面自由能,这种情况下(101)面的生长受到限制,从而使晶体发育完成后最终的暴露面为(001)面,故F-离子的存在使得所获得的涂层是由(001)面外露的锐钛矿晶体构成。图8为160 ,10 h,0.25 mL / HF(40 wt.%) , 0.25 mL / NH4F(0.2 M)条件下,氧化钛涂层表面EDS能谱图,F元素的存在证实了氧化钛涂层形成过程中F-离子的吸附作用。
图8 氧化钛涂层的能谱分析
【结论】
(1) 针对生物医用镁合金面临的问题,选用无水乙醇作溶剂,在较低的反应温度下,通过溶剂热法在镁合金血管支架表面合成了锐钛矿氧化钛微纳米结构涂层。
(2) 通过改变溶剂热反应条件,可实现镁合金血管支架表面氧化钛涂层的微观形貌调控。反应时间、反应温度、氢氟酸含量及F-离子浓度的变化直接影响了涂层的致密度、表面粗糙度及微纳米结构的排列。
(3) 反应条件为160 ,10 h , 0.25 mL / HF(40 wt.%), 0.25 mL / NH4F(0.2 M)时,可获得均匀致密,呈片状规整排列的微纳米结构氧化钛涂层,表面粗糙度为350.7 nm。
【文献引用】
侯树森,李悦,杨婷婷,等.镁合金血管支架TiO2涂层的微形貌调控[J].特种铸造及有色合金,2022,42(4):472-476.
HOU SS,LI Y, YANG Z J , et al. Micromorphology control of TiO2 coating prepared on Mg alloy stent[J].Special Casting &Nonferrous Alloys,2022,42(4):472-476.
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)