氮化硅的制备

氮化硅的制备,第1张

2.1.1 硅粉直接氮化法

主要是指纯净硅粉在N2、N2+H2或NH3的还原性气氛中发生反应,生成氮化硅微粉[8-10]。根据反应温度的差异,反应方程式如下:

(2.1)

此法在较低温度下得到的是α-Si3N4和β-Si3N4的混合物,高温下得到的只有β-Si3N4。该法对硅粉粒径的要求比较高,而且反应温度比较高,对反应设备的耐高温耐高压性能提出了要求。因此,硅粉直接氮化法质量的进一步提高主要取决于碾磨机性能的提高和单质硅性质的改善。而由此方法发展起来的自蔓延高温合成 (Self-propagating High- temperature Synthesis,SHs)为硅粉直接氮化法开辟了一条新的思路。

2.1.2 碳热还原法

碳热还原法是指SiO2和C的粉末在高温下的N2气氛中发生氮化和还原反应,生成Si3N4微粉[11-13]。反应方程式如下:

(2.2)

虽然目一前人们对此反应的机理还没有探索清楚,但可以确定的是反应中生成了SiO2并由SiO2参与气相反应。产物的组成主要受C/SiO2比、起始物料的结构特征(细颗粒,低的粒径分布和晶型)、反应气相的组成和反应温度的控制。可以通过控制CO气流量来达到控制产物生成的速率。这种方法的一个很大的优点就是利用了自然界中十分丰富的二氧化硅为原料,特别适宜于大规模生产氮化硅微粉,且反应产物经热处理后为疏松粉末,粉体形状规则,粒径分布窄,无需再进行粉碎处理,从而避免了杂质的再次引入缺点是杂质含量特别是碳的含量比较高,而且以氮气作为反应物反应速度比较慢,而在氨气气氛中合成反应要比氮气气氛中快得多。

2.1.3 卤化硅氨解法

硅的卤化物(SIC14、SIBr4等)或硅的氢卤化物(SiHCl3、SiHZCl2、SiH3I等)与氨气或者氮气发生化学气相反应曰,生成氮化硅[14,15],其反应式为:

(2.3)

因为反应物是卤化硅和氨气,又在气相中反应,所以通常可以制得高纯的α氮化硅或无定形氮化硅粉末。或者在低温下先由硅的卤化物或氢卤化物生成硅亚胺,再由硅亚胺加热分解得到氮化硅,化学反应方程式为:

(2.4)

此反应的关键是要制得纯的硅亚胺,通过硅亚胺的热分解可以直接制得很纯的α-Si3N4粉末反应速度、也比较快,至今已开始应用于生产非晶氮化硅薄膜。如果作为合成氮化硅微晶的方法,此路径相对比较长,且需要低温条件。日本UBE公司早在1992年就建成了年产300 t的生产线,这是当时世界上规模最大的氮化硅生产线。谢毅等创造性地将其发展为SiCl4与NaNH2、NH4Cl在苯溶剂中的反应,生成了纯的β-Si3N4纳米棒,此反应的温度可以达到很低(450 ℃)。唐凯斌等670 ℃时以NaN和SiCl4为原料合成了α-Si3N4纳米晶邹贵付等以Mg3N2和SiCl4为原料600 ℃合成了α-Si3N4纳米线。

2.1.4 前躯体方法

制备前驱体法是指先由氮源和硅源先反应生成一种比较容易分解的前驱体,再由前驱体在比较温和的条件下分解产生氮化硅微粉(Preparation of Precursor)。此前驱体一般为聚合物,如聚硼硅氮烷前驱体、聚钦硅氮烷前驱体或由三甲基硅氮烷与三甲基硅氧烷制备得到的前驱体。此法最早由Seyferth与其合作者用SiH2Cl2和NH3反应,得到前驱体,再由前驱体在1150 ℃下和氮气气氛中分解得到了a-Si3N4粉末,产物含硅杂质,产率到达了70%。徐世峰等人以聚硼硅氮烷([NHSi(CH3)(C2H4)]3B)n初始反应物、以FeCl2为催化剂,通过三步反应,得到氮化硅一维结构。这种方法可以通过在原子尺度上调整聚合物前驱体的成分从而控制和改变产物的组分,是一种简单的获得高纯氮化硅或掺杂氮化硅的方法[16]。古云乐等人在低温下,用NH4Cl与硅合金Mg2Si反应,得到了α-Si3N4纳米微粒。此方法的到的α-Si3N4产率高达93%,且Si:N达到了0.756。可能的反应式如下:

(2.5)

T. E. Warne用硅铁合金,在1370 ℃用铝塔锅盛放硅铁合金粉末,在氨气气氛中反应24 h,得到了很纯的β-Si3N4纤维。M. V. Vlasova等也在900-1500 ℃用硅含量很高的硅铁合金得到了氮化硅粉末,并探讨了形成机理。此方法给我们提供了一种启示,可以作为一种经济的合成路线而加以研究和推广。

合成方法

可在1300-1400°C的条件下用单质硅和氮气直接进行 化合反应 得到氮化硅:

3 Si(s) + 2N2(g) →Si3N4(s)

也可用 二亚胺 合成

SiCl4(l) + 6NH3(g) →Si(NH)2(s) + 4NH4Cl(s)    在0 °C的条件下3Si(NH)2(s) →Si3N4(s) +N2(g) + 3H2(g)    在1000 °C的条件下

或用 碳热还原反应 在1400-1450°C的氮气气氛下合成:

3SiO2(s) + 6 C(s) + 2N2(g) →Si3N4(s) + 6 CO(g)

对单质硅的粉末进行渗氮处理的合成方法是在二十世纪50年代随着对氮化硅的重新“发现”而开发出来的。也是第一种用于大量生产氮化硅粉末的方法。但如果使用的硅原料纯度低会使得生产出的氮化硅含有杂质硅酸盐和铁。用二胺分解法合成的氮化硅是无定形态的,需要进一步在1400-1500°C的氮气下做退火处理才能将之转化为晶态粉末,目前二胺分解法在重要性方面是仅次于渗氮法的商品化生产氮化硅的方法。 碳热还原反应 是制造氮化硅的最简单途径也是工业上制造氮化硅粉末最符合成本效益的手段。

电子级的氮化硅薄膜是通过 化学气相沉积 或者 等离子体增强化学气相沉积技术 制造的: [1]

3SiH4(g) + 4NH3(g) →Si3N4(s) + 12H2(g)3SiCl4(g) + 4NH3(g) →Si3N4(s) + 12 HCl(g)3SiCl2H2(g) + 4NH3(g) →Si3N4(s) + 6 HCl(g) + 6H2(g)

如果要在半导体基材上沉积氮化硅,有两种方法可供使用: [1]

利用低压化学气相沉积技术在相对较高的温度下利用垂直或水平管式炉进行。 [2]

等离子体增强化学气相沉积技术在温度相对较低的真空条件下进行。

氮化硅的晶胞参数与单质硅不同。因此根据沉积方法的不同,生成的氮化硅薄膜会有产生 张力 或 应力 。特别是当使用等离子体增强化学气相沉积技术时,能通过调节沉积参数来减少张力。 [3]

先利用 溶胶凝胶法 制备出二氧化硅,然后同时利用 碳热还原法 和氮化对其中包含特细碳粒子的 硅胶 进行处理后得到氮化硅纳米线。硅胶中的特细碳粒子是由葡萄糖在1200-1350°C分解产生的。合成过程中涉及的反应可能是: [4]

SiO2(s) + C(s) → SiO(g) + CO(g)    3 SiO(g) + 2N2(g) + 3 CO(g) →Si3N4(s) + 3CO2(g)    或3 SiO(g) + 2N2(g) + 3 C(s) →Si3N4(s) + 3 CO(g)

加工方法

作为粒状材料的氮化硅是很难加工的——不能把它加热到它的熔点1850°C以上,因为超过这个温度氮化硅发生分解成硅和氮气。因此用传统的热压烧结技术是有问题的。把氮化硅粉末粘合起来可通过添加一些其他物质比如烧结助剂或粘合剂诱导氮化硅在较低的温度下发生一定程度的液相烧结后粘合成块状材料。 [5] 但由于需要添加粘合剂或烧结助剂,所以这种方法会在制出的块状材料中引入杂质。使用放电等离子烧结是另一种可以制备更纯净大块材料的方法,对压实的粉末在非常短的时间内(几秒中)进行电流脉冲,用这种方法能在1500-1700°C的温度下得到紧实致密的氮化硅块状物。 [6] [7]

参考资料:

^ 跳转至:12.0 12.1 Yoshio Nishi, Robert Doering. Handbook of semiconductor manufacturing technology . CRC Press. 2000: 324–325. ISBN 0-8247-8783-8 .

^ Comparison of vertical and horizontal tube furnaces in the semiconductor industry . [2009-06-06].

^ deposition of silicon nitride layers . [2009-06-06].

^ Ghosh Chaudhuri, MahuaDey, RajibMitra, Manoj KDas, Gopes CMukherjee, Siddhartha. A novel method for synthesis of α-Si3N4 nanowires by sol–gel route . Sci. Technol. Adv. Mater. 2008, 9 (1): 015002. Bibcode:2008STAdM...9a5002G . doi:10.1088/1468-6996/9/1/015002 .

^ Silicon Nitride – An Overview . [2009-06-06].

^ Nishimura, ToshiyukiXu, XinKimoto, KojiHirosaki, NaotoTanaka, Hidehiko. Fabrication of silicon nitride nanoceramics—Powder preparation and sintering: A review . Sci. Technol. Adv. Mater. 2007, 8(7–8): 635. Bibcode:2007STAdM...8..635N . doi:10.1016/j.stam.2007.08.006 .

^ Peng, H. Spark Plasma Sintering of Si3N4-Based Ceramics – PhD thesis . Stockholm University. 2004 [2009-06-06].

维基百科搬运 zh.wikipedia.org/wiki/%E6%B0%AE%E5%8C%96%E7%9F%BD#cite_note-9


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/464168.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-04
下一篇2023-06-04

发表评论

登录后才能评论

评论列表(0条)

    保存