1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
参考资料:百度百科-扫描电子显微镜
成分即温度、压力和两个浓度项,用三维空间的立体模型已不足以表示这种相图。
三元相图指独立组分数为3的体系,该体系最多可能有四个自由度,即温度、压力和两个浓度项,用三维空间的立体模型已不足以表示这种相图。若维持压力不变,则自由度最多等于3,其相图可用立体模型表示。
若压力、温度同时固定,则自由度最多为2,可用平面图来表示。通常在平面图上用等边三角形(有时也有用直角坐标表示的)来表示各组分的浓度。
工业上所使用的金属材料,如各种合金钢和有色合金,大多由两种以上的组元构成,这些材料的组织,性能和相应的加工,处理工艺等通常不同于二元合金,因为在二元合金中加入第三组元后,会改变原合金组元间的溶解度,甚至会出现新的相变,产生新的组成相。
因此,为了更好地了解和掌握金属材料,除了使用二元合金相图外,还需掌握三元甚至多元合金相图,由于多元合金相图的复杂性,在测定和分析等方面受到限制,因此,用得较多的是三元合金相图,简称三元相图。
氨水浓度,pH值,不同组分前驱体的反应控制,反应时间,反应气氛,固含量,反应温度,流量,杂质。前驱体对三元材料的生产至关重要,因为前驱体的品质(形貌、粒径、粒径分布、比表面积、杂质含量、振实密度等)直接决定了最后烧结产物的理化指标。
可以这么说,三元材料60%的技术含量在前驱体工艺里面。前驱体反应过程中是一个复杂的过程,需要控制的工艺参数有:盐和碱的浓度、氨水浓度、盐溶液和碱溶液加入反应缸的速率等。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)